
M7210 Lecture 16 Friday September 28, 2012

Homomorphisms and their kernels

Definition. Let G and H be groups. A function φ : G → H is called a homomorphism if it
preserves the group structure, in the sense that:

i) φ(eG) = eH ,

ii) for all g ∈ G, φ(g−1) =
(

φ(g)
)

−1

.
iii) for all f, g ∈ G, φ(fg) = φ(f)φ(g).

Fact. Any function φ : G → H that satisfies iii) also satisfies i) and ii).

Proof . iii) ⇒ i): φ(eG) = φ(eGeG) = φ(eG)φ(eG). Multiplying by (φ(eG)
)

−1

, we get eH = φ(eG).

iii) ⇒ ii): eH = φ(eG) = φ(g)φ(g−1). Now multiply on the left by (φ(g))−1 and simplify to get
(φ(g))−1 = φ(g−1).

Definition. If φ : G → H is a homomorphism, the kernel of φ, denoted kerφ, is the set { g ∈ G |
φ(g) = eH }.

Fact. φ(f) = φ(g) ⇔ φ(f)−1φ(g) = eH ⇔ φ(f−1g) = eH ⇔ f−1g ∈ ker φ.

Fact. ker φ is a subgroup of G. If g ∈ ker φ and f ∈ G, then f−1gf ∈ ker φ.

Proof . Exercise.

Definition. A subgroup N ⊆ G is said to be normal if f−1nf ∈ N whenever n ∈ N and f ∈ G.

Note that the kernel of any homomorphism φ : G → H is a normal subgroup of G.

Quotients of groups

Let G be a group. We seek to determine the equivalence relations ∼ on G that are compatible
with the group structure, in the sense that the equivalence class of a product depends only on the
classes of factors. We require, in other words, that

if f ∼ f ′ and g ∼ g′, then fg ∼ f ′g′. (∗)

If this is true, then for all f, g ∈ G:

i) if e ∼ g, then g−1 ∼ gg−1 = e

ii) if f ∼ e and g ∼ e then fg ∼ e.

iii) if g ∼ e, then gf ∼ f and f−1gf ∼ f−1f = eG.

iv) if g ∼ f if and only if f−1g ∼ e.

This shows the first half of:

Proposition. (a) If ∼ is any equivalence relation on a group G that is compatible with the
group structure in the sense that (∗) is satisfied, then the set of elements that are equivalent to
e forms a normal subgroup N∼. Moreover, ∼ is completely determined by N∼ in the sense that
f ∼ g ⇔ f−1g ∈ N∼. (b) Conversely, if N is any normal subgroup, then the relation ∼N defined
by f ∼N g ⇔ f−1g ∈ N is an equivalence relation that satisfies (∗), and hence defines a group
structure on the set of equivalence classes.

Proof . We have already proved (a). The proof of (b) is left as an exercise. /////
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What do the equivalence classes of ∼N look like? Fix f ∈ G. Then, for any g ∈ G:

f ∼N g ⇔ f−1g ∈ N ⇔ ∃n ∈ N, f−1g = n ⇔ ∃n ∈ N, g = fn ⇔ g ∈ fN

Thus,
[f ]N = { g ∈ G | f ∼N g } = fN

fN = { fn | n ∈ N } is called a left coset of N . The set of all left cosets is denoted G/N . Our
discussion has shown the following:

Proposition. (gN)(hN) = (gh)N is a well-defined group operation on G/N . In G/N , (gN)−1 =
g−1N and eG/N = eN = N . Moreover, g 7→ gN is a surjective group homomorphism from G onto
G/N and that its kernel is N .

N does double duty. On the one hand, it is a normal subgroup of G. On the other, it is an element

of G/N .

Zeroth Isomorphism Theorem. Let φ : G → H be any homomorphism of groups, let K be its
kernel and let πK : G → G/K; g 7→ gK. Then φ = φπK , where φ : G/K → H; gK 7→ φ(g).

Remark. If K is merely contained in ker φ, the same conclusion can be made.

Cosets

So far, we have not made any use of cosets other than to note that the cosets of a normal subgroup
are equivalence classes of a group-compatible equivalence relation. But cosets of subgroups that
are not normal have a very important role in group theory.

Let H be a subgroup of G. The left coset gH is { gh | h ∈ H }, and the set of all left cosets is
denoted G/H.

Note the following:

i) The cardinality of gH is the same as the cardinality of H.

ii) g ∈ H if and only if gH = H.

iii) f−1g ∈ H ⇔ g ∈ fH ⇔ gH = fH.

Lemma. Two left cosets of H in G are either equal or disjoint.

Proof 1. Suppose x ∈ fH ∩ gH. Then there are h1, h2 ∈ H such that fh1 = x = gh2. Then
f−1g = h1h

−1

2
∈ H, so fH = gH. /////

Proof 2. The relation ∼H defined by f ∼H g :⇔ f−1g ∈ H is reflexive (because e ∈ H), symmetric
(because H is closed under inversion, and (f−1g)−1 = g−1f) and transitive (because H is closed
under the group operation, so f−1g, g−1k ∈ H ⇒ f−1k ∈ H); iii) shows that the equivalence
class of f is fH. /////

Theorem. (Lagrange) If G is finite and H is a subgroup of G, then

|G| = |G/H| · |H|.

(Here, |S| denotes the cardinality of S. The cardinality of a group is called its order .)

The order of g ∈ G is the smallest cardinal number k so that gk = e. (This is equal to the order
of 〈g〉 := the subgroup of G generated by g.)

Corollary. If G is finite, the order of any element of G divides |G|.

Proof . Consider the subgroup 〈g〉 = { gi | i ∈ Z }.

Corollary. A group of prime order has no proper subgroups.
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