M7210 Lecture 16

Homomorphisms and their kernels

Definition. Let G and H be groups. A function $\phi : G \to H$ is called a *homomorphism* if it preserves the group structure, in the sense that:

- i) $\phi(e_G) = e_H$,
- *ii*) for all $g \in G$, $\phi(g^{-1}) = (\phi(g))^{-1}$.
- *iii*) for all $f, g \in G$, $\phi(fg) = \phi(f)\phi(g)$.

Fact. Any function $\phi: G \to H$ that satisfies *iii*) also satisfies *i*) and *ii*).

Proof. $iii) \Rightarrow i$: $\phi(e_G) = \phi(e_G e_G) = \phi(e_G)\phi(e_G)$. Multiplying by $(\phi(e_G))^{-1}$, we get $e_H = \phi(e_G)$. $iii) \Rightarrow ii$: $e_H = \phi(e_G) = \phi(g)\phi(g^{-1})$. Now multiply on the left by $(\phi(g))^{-1}$ and simplify to get $(\phi(g))^{-1} = \phi(g^{-1})$.

Definition. If $\phi : G \to H$ is a homomorphism, the *kernel of* ϕ , denoted ker ϕ , is the set $\{g \in G \mid \phi(g) = e_H\}$.

Fact.
$$\phi(f) = \phi(g) \Leftrightarrow \phi(f)^{-1}\phi(g) = e_H \Leftrightarrow \phi(f^{-1}g) = e_H \Leftrightarrow f^{-1}g \in \ker \phi.$$

Fact. ker ϕ is a subgroup of G. If $g \in \ker \phi$ and $f \in G$, then $f^{-1}gf \in \ker \phi$.

Proof. Exercise.

Definition. A subgroup $N \subseteq G$ is said to be *normal* if $f^{-1}nf \in N$ whenever $n \in N$ and $f \in G$.

Note that the kernel of any homomorphism $\phi: G \to H$ is a normal subgroup of G.

Quotients of groups

Let G be a group. We seek to determine the equivalence relations \sim on G that are compatible with the group structure, in the sense that the equivalence class of a product depends only on the classes of factors. We require, in other words, that

if
$$f \sim f'$$
 and $g \sim g'$, then $fg \sim f'g'$. (*)

If this is true, then for all $f, g \in G$:

i) if $e \sim q$, then $q^{-1} \sim qq^{-1} = e$

- *ii*) if $f \sim e$ and $g \sim e$ then $fg \sim e$.
- *iii*) if $g \sim e$, then $gf \sim f$ and $f^{-1}gf \sim f^{-1}f = e_G$.
- *iv*) if $g \sim f$ if and only if $f^{-1}g \sim e$.

This shows the first half of:

Proposition. (a) If \sim is any equivalence relation on a group G that is compatible with the group structure in the sense that (*) is satisfied, then the set of elements that are equivalent to e forms a normal subgroup N_{\sim} . Moreover, \sim is completely determined by N_{\sim} in the sense that $f \sim g \Leftrightarrow f^{-1}g \in N_{\sim}$. (b) Conversely, if N is any normal subgroup, then the relation \sim_N defined by $f \sim_N g \Leftrightarrow f^{-1}g \in N$ is an equivalence relation that satisfies (*), and hence defines a group structure on the set of equivalence classes.

Proof. We have already proved (a). The proof of (b) is left as an exercise. /////

What do the equivalence classes of \sim_N look like? Fix $f \in G$. Then, for any $g \in G$:

$$f \sim_N g \Leftrightarrow f^{-1}g \in N \Leftrightarrow \exists n \in N, \ f^{-1}g = n \Leftrightarrow \exists n \in N, \ g = fn \Leftrightarrow g \in fN$$

Thus,

$$[f]_N = \{ g \in G \mid f \sim_N g \} = fN$$

 $fN = \{ fn \mid n \in N \}$ is called a *left coset of N*. The set of all left cosets is denoted G/N. Our discussion has shown the following:

Proposition. (gN)(hN) = (gh)N is a well-defined group operation on G/N. In G/N, $(gN)^{-1} = g^{-1}N$ and $e_{G/N} = eN = N$. Moreover, $g \mapsto gN$ is a surjective group homomorphism from G onto G/N and that its kernel is N.

N does double duty. On the one hand, it is a normal subgroup of G. On the other, it is an element of G/N.

Zeroth Isomorphism Theorem. Let $\phi : G \to H$ be any homomorphism of groups, let K be its kernel and let $\pi_K : G \to G/K; g \mapsto gK$. Then $\phi = \overline{\phi} \pi_K$, where $\overline{\phi} : G/K \to H; gK \mapsto \phi(g)$.

Remark. If K is merely contained in ker ϕ , the same conclusion can be made.

Cosets

So far, we have not made any use of cosets other than to note that the cosets of a normal subgroup are equivalence classes of a group-compatible equivalence relation. But cosets of subgroups that are *not* normal have a very important role in group theory.

Let H be a subgroup of G. The left cos t gH is $\{gh \mid h \in H\}$, and the set of all left cos ts is denoted G/H.

Note the following:

- i) The cardinality of gH is the same as the cardinality of H.
- *ii*) $g \in H$ if and only if gH = H.
- $iii) \ f^{-1}g \in H \ \Leftrightarrow \ g \in fH \ \Leftrightarrow \ gH = fH.$

Lemma. Two left cosets of H in G are either equal or disjoint.

Proof 1. Suppose $x \in fH \cap gH$. Then there are $h_1, h_2 \in H$ such that $fh_1 = x = gh_2$. Then $f^{-1}g = h_1h_2^{-1} \in H$, so fH = gH.

Proof 2. The relation \sim_H defined by $f \sim_H g :\Leftrightarrow f^{-1}g \in H$ is reflexive (because $e \in H$), symmetric (because H is closed under inversion, and $(f^{-1}g)^{-1} = g^{-1}f$) and transitive (because H is closed under the group operation, so $f^{-1}g, g^{-1}k \in H \Rightarrow f^{-1}k \in H$); *iii*) shows that the equivalence class of f is fH.

Theorem. (Lagrange) If G is finite and H is a subgroup of G, then

$$|G| = |G/H| \cdot |H|.$$

(Here, |S| denotes the cardinality of S. The cardinality of a group is called its order.)

The order of $g \in G$ is the smallest cardinal number k so that $g^k = e$. (This is equal to the order of $\langle g \rangle :=$ the subgroup of G generated by g.)

Corollary. If G is finite, the order of any element of G divides |G|.

Proof. Consider the subgroup $\langle g \rangle = \{ g^i \mid i \in \mathbb{Z} \}.$

Corollary. A group of prime order has no proper subgroups.