M7210 Lecture 17 Monday October 1, 2012

Group actions.

We ended the last lecture by introducing the set of cosets G/H := {gh | g € G} of and arbitrary subgroup
H of a group G. When H is normal, G/H has the structure of a group. The main theme of this lecture is
to examine the structure that G/H possesses when H is not normal, provide an axiomatic characterization
(transitive G-set) and give some applications.

Definition. Let G be a group. A G-set is a set X equipped with a mapping
GxX— X;(g,2) — gz

called the action of G on X, that satisfies the following axioms:
i) for all z € X, ex = x;
it) for all f,g € G and all x € X, f(gx) = (fg)x.

An action is a function « : G x X — X. Often, we do not name it explicitly, but we will use the name
a in this paragraph and below when clarity is needed. Let us adopt the notation ay(x) for the image of
(g,2). If we select an element g of G and hold it fixed, then a4 is a function from X to X. Axiom ¢) says
that ae = idy and axiom i) says that ayay = arg. The two axioms together imply that oy is the inverse
function of a,-1. Therefore, since G is a group, each function oy : X — X is a bijection, and the map
g — a4 G — Bij(X, X) is a homomorphism. Conversely, if g — a4 : G — Bij(X, X) is any homomorphism
of groups, then (g, ) — a4(x) is an action of G on X.

Ezxamples.

1. G itself is a G-set, where the action G x G — G is the group operation. We referred to this action in the
proof of Cayley’s Theorem, where we used a different notation in order to highlight the distinction between
the notions of group operation and group action.

2. Let H be a subgroup of G. Then G acts on G/H via

(figH) v~ fgH = ay(gH).

Since we have defined af(gH) by reference to one of many possible names for the coset gH, we need to show

that it is well-defined. But .
goH =g1H & gy "go € H

g f fgoe H
& (fo) ' (fgo) € H
& fgH = fgoH.

3. A set of the form Hg is called a right coset. The collection of all right cosets of H in G is denoted H \ G.
We have Hg=Hf & H=Hfg ' < fg~' € H. G actson H\G by

(f,Hg) — Hgf™ ' = as(Hyg).

This is well-defined, since Hgy = Hgs < g195° € H & gi1f 'fg;' € H & Hgif~' = Hgof 7', Tt is an
action, since oy (af(Hg) = Hgf 'k~ = Hg(kf)™! = aps(Hyg).
4. G acts on X = G by conjugation as follows:

(9,2) = gag™".

5. The group F Euclidean symmetries (a.k.a. isometries) of the complex plane is the subgroup of the group
of all bijections of C with itself generated by D, and C itself acting by translations. Each element of F is a
function f of the form f(z) = az+bor f(z) = aZ+b, where a,b € C and |a| = 1. The action is (f, z) — f(2).
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6. For any field F, the group G = GL(n,F) of all invertible n X n matrices acts on X = F™ by matrix
multiplication: (A4,v) — Av.

7. The group G = GL(2,C) acts on X = C U {oo} by linear fractional transformations. The subgroup
SL(2,C) C G of matrices with determinant 1 acts on {z + iy | z,y € R, 0 < y}. For more detail about
these interesting and important examples, read pages 159-160.

Definitions. Let G x X — X be a group action and let x € X.
i) Gy :={g€G|gxr=ua}is called the isotropy group of x, or stabilizer of x.
i1) Gz :={gx | g € G} is called the orbit of x.

An action is said to be transitive if it has only one orbit.

Note that X is a disjoint union of orbits. In other words, “belonging to the same orbit” is an equivalence
relation on X.

Lemma. Ify = hx for some h € G. Then G, = hG,h™'. Thus, if x and y are is the same G-orbit, then
G, is a conjugate of G .

Proof. Gy ={g€G|lghv=hx}={g€G|h lghe Gy} =hG,h".

Structure of G-sets. Suppose X and Y are G-sets. A G-set morphism from X toY is afunction¢ : X — Y
such that ¢(gx) = go(x) for all x € X. A G-set isomorphism is a bijective G-set morphism.

Note that the that ¢ is a G-set isomorphism if and only if it has two-sided inverse as a G-set morphism.
For suppose ¢ : X — Y is a bijective G-set morphism. Let ¢! be its set-theoretic inverse. If y € Y, then
y = ¢(x) for a unique x € X, and 6~} (gy) = ¢~} (go(2)) = 6~} (#(g2)) = gz = g6~ (). Thus, 6~ is
G-set morphism.

Proposition. Suppose X is a transitive G-set. Let x be a fixed element of X and let H be its isotropy
group. Define
¢:G/H — X;¢(gH) := gx.

Then ¢ is a well-defined G-set isomorphism.

Proof. The function is well-defined, for suppose g1 H = goH; then g;lgl € H, so g;lglx =T, S0 §1T = gaZ.
It is a G-set morphism, for ¢(fgH) = (fg)x = f(gz) = fd(gH). To see it is injective, suppose ¢(g1H) #
#(goH); then gy 'grz # x s0 g5 g1 & H so g1H # goH. Tt is surjective because X is transitive, so each
element of X is equal to gx = ¢(gH) for some g € G 1111/

Corollary. (Counting orbits.) If G is a finite group, X is a G-set and x € X, then

|G| = |Gpl |G-

Exercise. Suppose X is a G-set. Let ~ be an equivalence relation on X. Say that ~ is compatible with the
G-action if
forall z,2’ € X and all g € G, z ~ 2’ = gz ~ ga'.

Show that the G-compatible equivalence relations on G/H are in one-to-one correspondence with the sub-
groups K C G that contain H.

Proposition. If G is a finite group let p is the smallest prime dividing the order of G. Then any subgroup
of index p is normal.

Proof. . Let H be a subgroup of index p. Let G act on G/H by left translation, and restrict this to an
action of H on G/H. Then {H} is a single orbit, and the remaining p — 1 cosets of H form a union of orbits.
Now, the number of elements in any orbit of H is a divisor of the order of H, but all divisors of |H| are > p.
Therefore, all the orbits of H are singletons. This means hgH = gH for all g € G, so g~ Hg C H for all

g€G. /1111

Will continue with Action by conjugation, centralizers and class equation.



