
M7210 Lecture 17 Monday October 1, 2012

Group actions.

We ended the last lecture by introducing the set of cosets G/H := { gh | g ∈ G } of and arbitrary subgroup
H of a group G. When H is normal, G/H has the structure of a group. The main theme of this lecture is
to examine the structure that G/H possesses when H is not normal, provide an axiomatic characterization
(transitive G-set) and give some applications.

Definition. Let G be a group. A G-set is a set X equipped with a mapping

G × X → X ; (g, x) 7→ gx

called the action of G on X , that satisfies the following axioms:
i) for all x ∈ X , ex = x;

ii) for all f, g ∈ G and all x ∈ X , f(gx) = (fg)x.

An action is a function α : G × X → X . Often, we do not name it explicitly, but we will use the name
α in this paragraph and below when clarity is needed. Let us adopt the notation αg(x) for the image of
(g, x). If we select an element g of G and hold it fixed, then αg is a function from X to X . Axiom i) says
that αe = idX and axiom ii) says that αfαg = αfg. The two axioms together imply that αg is the inverse
function of αg−1 . Therefore, since G is a group, each function αg : X → X is a bijection, and the map
g 7→ αg : G → Bij(X, X) is a homomorphism. Conversely, if g 7→ αg : G → Bij(X, X) is any homomorphism
of groups, then (g, x) 7→ αg(x) is an action of G on X .

Examples.

1. G itself is a G-set, where the action G×G → G is the group operation. We referred to this action in the
proof of Cayley’s Theorem, where we used a different notation in order to highlight the distinction between
the notions of group operation and group action.

2. Let H be a subgroup of G. Then G acts on G/H via

(f, gH) 7→ fgH = αf (gH).

Since we have defined αf (gH) by reference to one of many possible names for the coset gH , we need to show
that it is well-defined. But

g0H = g1H ⇔ g−1

1
g0 ∈ H

⇔ g−1

1
f−1fg0 ∈ H

⇔ (fg1)
−1(fg0) ∈ H

⇔ fg1H = fg0H.

3. A set of the form Hg is called a right coset. The collection of all right cosets of H in G is denoted H \G.
We have Hg = Hf ⇔ H = Hfg−1 ⇔ fg−1 ∈ H . G acts on H \G by

(f, Hg) 7→ Hgf−1 = αf (Hg).

This is well-defined, since Hg1 = Hg2 ⇔ g1g
−1

2
∈ H ⇔ g1f

−1fg−1

2
∈ H ⇔ Hg1f

−1 = Hg2f
−1. It is an

action, since αk(αf (Hg) = Hgf−1k−1 = Hg(kf)−1 = αkf (Hg).

4. G acts on X = G by conjugation as follows:

(g, x) 7→ gxg−1.

5. The group E Euclidean symmetries (a.k.a. isometries) of the complex plane is the subgroup of the group
of all bijections of C with itself generated by D∞ and C itself acting by translations. Each element of E is a
function f of the form f(z) = az+b or f(z) = az+b, where a, b ∈ C and |a| = 1. The action is (f, z) 7→ f(z).
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6. For any field F, the group G = GL(n, F) of all invertible n × n matrices acts on X = Fn by matrix
multiplication: (A, v) 7→ Av.

7. The group G = GL(2, C) acts on X = C ∪ {∞} by linear fractional transformations. The subgroup
SL(2, C) ⊂ G of matrices with determinant 1 acts on { x + iy | x, y ∈ R , 0 < y }. For more detail about
these interesting and important examples, read pages 159-160.

Definitions. Let G × X → X be a group action and let x ∈ X .

i) Gx := { g ∈ G | gx = x } is called the isotropy group of x, or stabilizer of x.

ii) Gx := { gx | g ∈ G } is called the orbit of x.

An action is said to be transitive if it has only one orbit.

Note that X is a disjoint union of orbits. In other words, “belonging to the same orbit” is an equivalence
relation on X .

Lemma. If y = hx for some h ∈ G. Then Gy = hGxh−1. Thus, if x and y are is the same G-orbit, then
Gy is a conjugate of Gx.

Proof . Gy = { g ∈ G | ghx = hx } = { g ∈ G | h−1gh ∈ Gx } = hGxh−1.

Structure of G-sets. Suppose X and Y are G-sets. A G-set morphism from X to Y is a function φ : X → Y
such that φ(gx) = gφ(x) for all x ∈ X . A G-set isomorphism is a bijective G-set morphism.

Note that the that φ is a G-set isomorphism if and only if it has two-sided inverse as a G-set morphism.
For suppose φ : X → Y is a bijective G-set morphism. Let φ−1 be its set-theoretic inverse. If y ∈ Y , then
y = φ(x) for a unique x ∈ X , and φ−1(gy) = φ−1(gφ(x)) = φ−1(φ(gx)) = gx = gφ−1(y). Thus, φ−1 is a
G-set morphism.

Proposition. Suppose X is a transitive G-set. Let x be a fixed element of X and let H be its isotropy
group. Define

φ : G/H → X ; φ(gH) := gx.

Then φ is a well-defined G-set isomorphism.

Proof . The function is well-defined, for suppose g1H = g2H ; then g−1

2
g1 ∈ H , so g−1

2
g1x = x, so g1x = g2x.

It is a G-set morphism, for φ(fgH) = (fg)x = f(gx) = fφ(gH). To see it is injective, suppose φ(g1H) 6=
φ(g2H); then g−1

2
g1x 6= x so g−1

2
g1 6∈ H so g1H 6= g2H . It is surjective because X is transitive, so each

element of X is equal to gx = φ(gH) for some g ∈ G /////

Corollary. (Counting orbits.) If G is a finite group, X is a G-set and x ∈ X , then

|G| = |Gp| |Gp|.

Exercise. Suppose X is a G-set. Let ∼ be an equivalence relation on X . Say that ∼ is compatible with the

G-action if
for all x, x′ ∈ X and all g ∈ G, x ∼ x′ ⇒ gx ∼ gx′.

Show that the G-compatible equivalence relations on G/H are in one-to-one correspondence with the sub-
groups K ⊆ G that contain H .

Proposition. If G is a finite group let p is the smallest prime dividing the order of G. Then any subgroup
of index p is normal.

Proof . . Let H be a subgroup of index p. Let G act on G/H by left translation, and restrict this to an
action of H on G/H . Then {H} is a single orbit, and the remaining p−1 cosets of H form a union of orbits.
Now, the number of elements in any orbit of H is a divisor of the order of H , but all divisors of |H | are ≥ p.
Therefore, all the orbits of H are singletons. This means hgH = gH for all g ∈ G, so g−1Hg ⊆ H for all
g ∈ G. /////

Will continue with Action by conjugation, centralizers and class equation.
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