
M7210 Lecture 19 Friday October 5, 2012

Today, we’ll begin by proving the criterion for recognizing products that we didn’t get to last time.
Then, we’ll define and study semidirect products.

Direct Products.

If K and L are groups, then K × L, with operation (k1, ℓ1)(k2, ℓ2) = (k1k2, ℓ1ℓ2) is a group. K × L
has projection homomorphisms πK : (k, ℓ) 7→ k and πL : (k, ℓ) 7→ ℓ that satisfy the following universal
mapping property:

(UMP) given any group T and homomorphisms γ : T → K and δ : T → L, there is a unique
homomorphism γ × δ : T → K × L such that πK(γ × δ) = γ and πL(γ × δ) = δ.

Notice that K × {eL} and {eK} × L are both normal in K × L; indeed, these are the kernels of the
projection homomorphisms. Also note that in K × L every element of the former commutes with every
element of the latter, and their intersection is eK×L.

The following theorem is useful in recognizing when a group is isomorphic to a product.

Proposition 1. Suppose G is a group with subgroups K and L such that:

i) K ∩ L = {eG};

ii) for all k ∈ K and ℓ ∈ L, kℓ = ℓk;

iii) KL = G.

Then G is isomorphic to the product K × L.

Proof . By iii), every element g ∈ G can be written in the form kℓ with k ∈ K and ℓ ∈ L. If k1ℓ1 = k2ℓ2,
then k−1

2 k1 = ℓ2ℓ
−1
1 ∈ K ∩ L, so by i) k1 = k2 and ℓ1 = ℓ2. Thus, the representation is unique. Thus,

we can define “projection maps” φK := G → K by φK(kℓ) = k and φL := G → L by φL(kℓ) = ℓ. We
prove that G, with these projections has the UMP that defines K × L. Suppose T is any group, and
let γ : T → K and δ : T → L be given. Define (γ × δ)(t) := γ(t)δ(t). This map is obviously the unique
function that composes with the projections as required, but is it a homomorphism? If s, t ∈ T , then
(Ta’Daa):

(γ × δ)(st) = γ(st)δ(st) = γ(s)γ(t)δ(s)δ(t)
by ii)

= γ(s)δ(s)γ(t)δ(t) =
(

(γ × δ)(s)
)(

(γ × δ)(t)
)

. /////

Exercise 1. Suppose that p and q are distinct primes. Show that any abelian group of order pq is
isomorphic to Z/pZ × Z/qZ.

Exercise 2. Give an alternate proof of the proposition that produces an isomorphism between K × L
and G directly.

Remark. The proposition does not assume that the subgroups K and L are normal, but this of course
follows from the isomorphism of G with K × L.

Exercise 3. Prove the normality of K and L directly from the hypotheses. Are all three assumptions
about K and L needed for this conclusion?

Exercise 3 has a converse. Assumption ii) is a consequence of i) and: ii′) the two subgroups K and L
are normal in G. To see this, assume i), ii′). Let k ∈ K and ℓ ∈ L. Then ℓkℓ−1 ∈ K, so ℓkℓ−1k−1 ∈ K.
Also, since ℓ−1 ∈ L, kℓ−1k−1 ∈ L, so ℓkℓ−1k−1 ∈ L. By i), ℓkℓ−1k−1 = e. It follows that ℓk = kℓ.
Thus,

Proposition 2. Suppose G is a group with subgroups K and L such that:

i) K ∩ L = {eG};

ii′) K and L are both normal;

iii) KL = G.

Then G is isomorphic to the product K × L.
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Semidirect Products

Some groups do not satisfy the hypotheses of this proposition, but nearly do. Consider the group D2n,
which as we have seen is generated by two elements ρ and σ such that ρn = e, σ2 = e and σρ σρ = e:

D2n = { ρkσℓ | 0 ≤ k ≤ n − 1, 0 ≤ ℓ ≤ 1 }.

The subgroups K = 〈ρ〉 and L = 〈σ〉 satisfy all the hypotheses of Proposition 2, except that only K is
normal, but L is not. There is a bijection of D2n with the set K × L, but the multiplication is not the
canonical product operation. Indeed, if we write (k, ℓ) as an abbreviation for ρkσℓ—taking k ∈ Z/nZ

and ℓ ∈ Z/2Z—then the rule for multiplication is:

(k1, ℓ1)(k2, ℓ2) = ρk1σℓ1ρk2σℓ2 = ρk1ρ(−1)ℓ1k2σℓ1σℓ2 = (k1 + (−1)ℓ1k2, ℓ1 + ℓ2).

Can we generalize this construction? We need to make sense of the meaning of (−1)ℓk. The map
k 7→ −k : Z/nZ → Z/nZ is an bijection of Z/nZ with itself and is also a homomorphism.

Definition. Let K be a group. An automorphism of K is an isomorphism of K with itself. The group
of all automorphisms of K is denoted Aut(K)

The map ℓ 7→ (−1)ℓ : Z/2Z → Aut(Z/nZ) is a homomorphism.

Suppose K and L are any groups whatsoever, and ℓ 7→ αℓ : L → Aut(K) is any homomorphism. Define
an operation ·α on k × ℓ by:

(k1, ℓ1) ·α (k2, ℓ2) = (k1αℓ1(k2), ℓ1ℓ2).

Exercise 4. Show that ·α is an associative operation on K × L with identity (eK , eL) and inversion
(k, ℓ) 7→ (α−1

ℓ (k−1), ℓ−1).

Exercise 5. Call the group obtained in the previous exercise K ×α L. Show that K × {eL} and
{eK} × L are subgroups of K ×α L that are isomorphic to K and L respectively. Identifying these
subgroups with K and L, show that if k ∈ K ⊆ K ×α L and ℓ ∈ L ⊆ K ×α L, then ℓkℓ−1 = αℓ(k).

Exercise 6. Study the text, pages 167 and 168. Restate 4.43 and 4.44 in the notation of this lecture.

In order to construct concrete examples, we will need to be able to name concrete homomorphisms
L → Aut(K). The simplest situation arises when both L and K are cyclic. Any homomorphism with
a cyclic group as domain is completely determined by the image of a generator. So, in particular, any
automorphism of a cyclic group is determined by the image of a generator, and the generators of Z/nZ

are the classes m + nZ such that (m, n) = 1.

Example. Here, we will give an example that parallels the dihedral group. The purpose is to illustrate
the semidirect product construction. Let’s let K = Z/100Z. There is an automorphism α of K that
sends 1 to 71. (I just selected this number randomly.) Note that α is “multiplication by 71 mod 100”.
Thus, αn(1) = 71

n
. Using a calculator, we find the following (where we understand the integers that

are not in exponents to refer to elements of K = Z/100Z):

α(1) = 71, α2(1) = 41, α3(1) = 11, α4(1) = 81, α5(1) = 51,

α6(1) = 21, α7(1) = 91, α8(1) = 61, α9(1) = 31, α10(1) = 1.

This shows that there is a homomorphism from Z/10Z to Aut(Z/100Z) that sends 1+10Z to α. Thus,
on Z/100Z × Z/10Z, we have a group operation defined by:

(k1, ℓ1)(k2, ℓ2) = (k1 + (71)ℓ1k2, ℓ1 + ℓ2),
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where we read the kis modulo 100 and the ℓjs modulo 10.

Remark. Let p be a positive prime. As you know, Z/pZ is a field, and therefore the non-zero elements
form an abelian group under multiplication. This (p − 1)-element abelian group is denoted (Z/pZ)×.
It is straightforward to show that Aut(Z/pZ) ∼= (Z/pZ)×. Amazingly, (Z/pZ)× is always cyclic. This
takes some effort to prove. The usual approach today is to use some facts about polynomials—see
Knapp, page 152. The first proofs of this were given by Gauss in the Disquisitiones Arithmeticae

(1801) in Articles 54 and 55.
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