
M7210 Lecture 20 Monday October 8, 2012

Categories and Functors

Much of modern mathematics can be understood as the study of sets with structure. Groups, rings
and modules are obvious examples—all are sets equipped with operations that satisfy certain axioms.
Topological spaces are also sets equipped with structure, but in this case the structure is not described
by means of operations but by some notion of closeness. In analysis, the objects have both algebraic
and topological structure. In most mathematical work, one is not concerned with a single structure,
but rather with many structures of a given type and the relations between various individual structures
of that type that can be described by means of functions that preserve that structure. Group theory
provides a good example. Even if we set out to understand the properties of a single group, we often
find ourselves looking at the subgroups and homomorphic images of that group.

Category theory provides a useful way of thinking about the relationships that hold between the
structures of a given kind and of comparing the relationships among the representatives of one kind
(e.g., topological spaces) with the relationships among the representatives of another (e.g. modules).
Category theory takes us even further, allowing us to generalize the notion of structure beyond the
set-theoretic universe. There are categories whose objects are not structured sets, and whose properties
are understood entirely in terms of the morphisms that link them to other objects. This may make
category theory seem mysterious and esoteric, yet one of its greatest contributions to mathematics
is quite mundane and practical: it is a compact and efficient language for expressing the kinds of
abstractions that are routine in modern mathematics.

But I have offered enough appetizers! Let us proceed to the main course!

Definition. A category consists of a collection of objects and a collection of morphisms satisfying the
following axioms:

1) Every morphism f is associated with two objects, called respectively the domain and the codomain

of f . If f has domain A and codomain B, we write f : A → B. For any two objects, A and B,
the collection of all morphisms with domain A and codomain B is a set, denoted morph(A, B).
morph(A, B) and morph(C, D) are disjoint, unless A = C and B = D.

2) If f : A → B (i.e., f ∈ morph(A, B)) and g : B → C, then there is a morphism gf : A → C. For
every object A, there is a morphism idA : A → A called the identity on A.

3) Composition of morphisms is associative: h(gf) = (hg)f whenever the compositions exist. The
identity morphism on any object is a left and right identity: f idA = f and idB f = f for all objects
A and B and morphisms f , provided the compositions exist.

Routine examples.

1) Set is the category of sets and functions. The objects of this category are the sets and the
morphisms are the functions between sets.

2) The category Group has as its objects all groups. Its morphisms are the group homomorphisms.
Ab is the category of abelian groups. Its objects are the abelian groups, and for any abelian groups
A and B, morphAb(A, B) = morphGroup(A, B).

3) Rng is the category of rings and ring homomorphisms. In Knapp, rings are not assumed to
possess multiplicative identity. The collection os all rings with identity together with the identity-
preserving ring homomorphisms between them forms a different category, called Ring. (This
naming convention was suggested by N. Jacobson. Not everyone uses it.)

4) The vector spaces over R and the linear maps between them form a category. The vector spaces
over C and the linear maps between them form a different category, and indeed, for each different
field F there is a different category of vector spaces over that field.

5) Fix a group G. The category of G-sets, denoted G-Set has G-sets as objects and G-set morphisms
(defined in Lecture 17) as morphisms.
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Definition. A category D is a subcategory of the category C if the objects of D form a subclass of
the objects of C and for any objects A and B of D, morphD(A, B) ⊆ morphC(A, B). We require
that identity morphisms and compositions agree in the two categories. D is said to be full in C if
morphD(A, B) = morphC(A, B) for all objects A, B of D.

Examples.

1) Ab is a full subcategory of Group.
2) Group is not a subcategory of Set because the objects are different. A group is a set equipped

with operations—not just a set. The relationship between Group and Set is described by functors;
see below.

Two surprising—but important—examples.

1) Let G be a group. Then G itself is a category. It has one object and has one morphism for each
element of G.

2) Let X be a partially ordered set—i.e., a set equipped with a reflexive, antisymmetic, transitive
relation ≤. Then we may view X as a category that has one object for each x ∈ X. We let
morph(x, y) contain a single element if x ≤ y. It is empty otherwise.

In trying to absorb these two examples, you may wonder what the single object in the category G is.
But this is not important. Our attention is on the features of the category that can be detected by the
relations among its objects and morphisms, and we studiously ignore the issue of what the objects and
morphisms might be “internally.” Similarly, if we regard Z (the integers) as the category determined
by its structure as ordered set, then we will say that there is exactly one morphism from 1 to 2, but
we have no interest in any information about it that cannot be stated by reference to the other objects
and morphisms in the category. The morphism from 1 to 2 may be composed with the morphism from
2 to 17 to obtain the unique morphism from 1 to 17. The morphism from 1 to 1 is id1. If I take the
composition of id1 followed by the unique morphism from 1 to 2, the result is the unique morphism
from 1 to 2. Etc.

Categorical concepts

Some special morphisms

Definition. Let C be a category, let A and B be objects of C and let f : A → B.
1) If there is g : B → A such that gf = idA and fg = idB , then f is said to be an isomorphism. If

morph(A, B) contains an isomorphism, then we say that A and B are isomorphic or equivalent.
2) f is said to be monic if it is left cancelable, i.e., for all g1, g2 : C → A, if fg1 = fg2, then g1 = g2.

f is said to be epic if it is right cancelable, i.e., for all g1, g2 : B → C, if g1f = g2f , then g1 = g2.

Examples.

1) A morphism of sets is an isomorphism if and only if it is bijective. The same thing is true in
Group, Ring and G-Set.

2) In the category determined by a group G, every morphism is an isomorphism. In the category
determined by a partially-ordered set, the only isomorphisms are the identity morphisms.

3) A morphism in Group or Ring is monic if an only if it is injective.

Proposition.

(a) A morphism of groups is epic if and only if it is surjective.
(b) The embedding of Z in Q is epic in Ring.

Proof . (a) [Linderholm, C., “A Group Epimorphism is Surjective,” Am. Math. Monthly 77, 176-7.] Let
f : G → H be a homomorphism of groups that is not surjective. Let A = f(G) ⊂ H. We need to
find a group K and two homomorphisms α, β : H → K such that α 6= β and αf = βf (i.e., α = β on
A). The strategy will be as follows. We have the standard action of H on H/A. We described this
in Lecture 17. It is a homomorphism from H to Bij(H/A). We are going to augment the set H/A to
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create a larger set, and then extend the action of H on H/A to this larger set to create α. Then we
create β by a slight modification of α. Let S = H/A ∪ {X}, where X is a token object that is not a
left coset of A in H. Let K = Bij(S). For each h ∈ H, let αh ∈ K be defined by αh(h1A) := hh1A
and αh(X) := X. Thus, α is an extension of the natural action of H on H/A. Let σ ∈ K be defined
by σ(X) := A, σ(A) := X and σ(h1A) := h1A if h1 ∈ H but h1 6∈ A. Let βh := σαhσ. One
can easily check that β : H → K; h 7→ βh is a homomorphism. We now show that αa = βa for all
a ∈ A. Suppose a ∈ A. If h1A 6= A, then αa(h1A) = ah1A. Note that ah1A 6= A. In the meantime,

βa(h1A) = σ
(

αa

(

σ(h1A)
)

)

= σ
(

αa

(

h1A
)

)

= σ
(

ah1A
)

= ah1A. Now, αa and βa also agree on A:

αa(A) = A = βa(A). Thus αa = βa for all a ∈ A. On the other hand, if h 6∈ A, then αh(h−1A) = A,
but

βh(h−1A) = σ
(

αh

(

σ(h−1A)
)

)

= σ
(

αh(h−1A)
)

= σ(A) = X.

This completes the proof of (a). Below is more detail about the actions, which you might find useful in
understanding the proof. We are assuming here that h 6∈ A.

αh : h−1A 7→ A 7→ hA; X 7→ X

βh : h−1A 7→ X 7→ hA, A 7→ A

(b) Suppose g1, g2 : Q → R are two (identity-preserving!) ring homomorphisms that agree on Z.
(R is an arbitrary ring.) We need to show that g1(m/n) = g2(m/n) for all m, n ∈ Z, n 6= 0. In case
R = {0}, this is obvious. So, suppose R is not the zero ring. Then,

ng1(m/n) = g1(m) = g2(m) = ng2(m/n).

We need to show that this implies g1(m/n) = g2(m/n). Suppose x and y are any elements of R and
nx = ny. Then n(x − y) = 0. But then, 0 = g1(1/n) · 0 = g1(1/n)

(

n(x − y)
)

=
(

g1(1/n)n
)

(x − y) =
g1(1)(x− y) = (x − y), so x = y.

Some special objects

Definition. Let C be a category. An object A of C is said to be initial if for every object X of C

there is a unique morphism f : A → X. An object Z of C is said to be final if for every object X of C

there is a unique morphism f : X → Z.

Examples. In Set, the empty set is initial, and any one-element set is final. In Group, the one-element
group {e} is both initial and final. In the category of rings with multiplicative identity, Z is initial and
the zero-ring {0} is final. The category G has no initial or final element, unless G is the trivial group.
A partially-ordered set has an initial (final) object if and only if it has a least (greatest) element.

Definition. Let {Aλ | λ ∈ Λ } be a collection of objects of C indexed by a set Λ. The categorical

product of the Aλ is an object P in C and a collection of morphisms { πλ : P → Aλ | λ ∈ Λ } such
that for any object T and morphisms αλ : T → Aλ, there is a unique morphism α : T → P such that
αλ = πλα for all λ.

The object P when it exists, is unique up to isomorphism. It is denoted
∏

λ∈Λ Aλ.

Definition. Let {Aλ | λ ∈ Λ } be a collection of objects of C indexed by a set Λ. The categorical sum

of the Aλ is an object S in C and a collection of morphisms { ιλ : Aλ → S | λ ∈ Λ } such that for any
object T and morphisms αλ : Aλ → T , there is a unique morphism α : S → T such that αλ = αιλ for
all λ.
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The object S when it exists, is unique up to isomorphism. It is denoted
∐

λ∈Λ Aλ. (In some categories,
other notations are traditional.)

Previous discussions have shown that in Set,
∏

λ∈Λ Aλ is the usual cartesian product and in Group,
∏

λ∈Λ Aλ is the cartesian product equipped with component-wise operations. In Set,
∐

λ∈Λ Aλ is the
disjoint union. (Here is an instance where a different notation is traditional: a union-symbol with a dot
inside it.) In Group,

∐

λ∈Λ Aλ exists but the description is complicated; see the section VII. 3. Free
Products, pp. 319-326 of Knapp. On the other hand, in Ab,

∐

λ∈Λ Aλ is the subgroup of
∏

λ∈Λ Aλ that
is generated by the images of the Aλ. If Λ is finite, then the two objects are equal.

Functors

A morphism of categories is called a functor. To be precise:

Definition. Let C and D be categories. A functor from C to D is a rule that assigns to each object A
of C and object F (A) of D and to each morphism f : A → B of C a morphism F (f) : F (A) → F (B).
This assignment must preserve identities and compositions whenever they exist:

F (idA) = idF (A), and F (gf) = F (g)F (f).

4


