
M7210 Lecture 23 Monday October 15, 2012

Abelian Groups III

Today, we are going to set up the machinery we will use to prove:

Theorem. If S is subgroup of Z
n, then we can choose a new basis {b1, . . . , bn} of Z

n and a new
generating set {t1, . . . , tℓ} (ℓ ≤ n) for S such that for each i = 1, . . . , ℓ, ti is an integer multiple of
bi, i.e., ti = dibi for some di ∈ Z.

This theorem ought to have a distinguished name—maybe, “Fundamental Theorem of Finitely-
Generated Abelian Groups.” But there are numerous ways of stating it and its immediate conse-
quences, and maybe this stands in the way of a standard name. The theorem is closely related to
“Smith Normal Form,” but I will not work with this concept in the present lecture.1

As I said at the end of the last lecture, the theorem has remarkable consequences. First, it means
that every subgroup of a free abelian group is free, for the ti form a basis for S. (A non-tivial
Z-linear relation among the ti would produce a non-trivial relation among the bi.) Second, the
theorem implies that every finitely generated abelian group is a direct sum of cyclic subgroups.
For suppose G is any finitely-generated abelian group. Then there is a surjection Z

n →→ G. Let S
be the kernel of this map, and choose {b1, . . . , bn} and {t1, . . . , tℓ} as in the theorem. Then

S =
ℓ

⊕

i=1

Zti,

and it follows (as we shall show in more detail later) that

G ∼= Z
n/S ∼= Z/d1Z ⊕ Z/d2Z ⊕ · · ·Z/dℓZ ⊕ Z

n−ℓ.

Observe that some of the di may be equal to 1, in which case the corresponding summand is {0}.
Finally, let me point out that the proof of the theorem is constructive, allowing us to compute
the basis {b1, . . . , bn} and the di from any list of generators for S. The procedure that I describe
below allows some choices to the user, but it can be turned into a computer program. Finding fast
implementations is an area of current research.

Using matrices to describe morphisms between free R-modules.

Let R be a ring with multiplicative identity. We have shown that Rn is the free R-module on the
standard basis {e1, . . . , en} ⊂ Rn, where

eij = (ei)j = πj(ei) =

{

1R, if i = j;
0, otherwise.

We are going to introduce a way of displaying the data required to describe elements and morphisms
of freeR-modules relative to a basis. It’s much like the notation introduced earlier for vector spaces,

1 You might look up “Smith Normal Form” on the web. You can even read Smith’s original
paper:

http : //www.jstor.org/stable/108738.

1

but we switch the roles of rows and columns. This seems to be done mainly to remain consistent
with the usual matrix multiplication conventions when R is not commutative.

Let B = {b1, . . . , bm} be a basis for Rm. Each element x ∈ Rm has a unique expression as
r1b1 + · · · + rmbm, with ri ∈ R. The row vector with the ri as entries is denoted

(

x ; B
)

:= (r1 · · · rm).

Suppose Rn has basis C = {c1, . . . , cn} and φ : Rm → Rn. Let
(

φ ; BC
)

denote the matrix whose

m rows are the
(

φ(b1) ; C
)

, . . . ,
(

φ(bm) ; C
)

:

(

φ ; BC
)

:=







(

φ(b1) ; C
)

...
(

φ(bm) ; C
)






.

In other words, the entries of
(

φ ; BC
)

are—in the ith row and jth column—the elements sij ∈ R
defined by

φ(bi) = si1c1 + . . . + sincn.

This results in conventions that are compatible with non-commutative rings. Indeed, if x =
r1b1 + · · · + rmbm, then

φ(x) = φ(r1b1 + · · · + rmbm)

= r1φ(b1) + · · · + rmφ(bm)

= r1(s11c1 + · · · s1ncn) + · · · + rm(sm1c1 + · · · s1ncn)

= (r1s11 + r2s21 + · · · + rmsm1)c1 + · · · + (rmsm1 + · · · rmsmn)cn.

This is consistent with matrix multiplication:

(

x ; B
)(

φ ; BC
)

= (r1 · · · rm)





s11 · · · s1n

...
...

...
sm1 · · · smn





= (r1s11 + r2s21 + · · · + rmsm1 · · · rmsm1 + · · · rmsmn)

=
(

φ(x) ; C
)

.

Exercise. Suppose R is not commutative. What would go wrong in attempting to represent
morphisms of free R-modules by matrix multiplication if we chose to represent elements by columns
and the application of a morphism by matrix multiplication with the matrix on the left.

Suppose φ : Rm → Rn is as above, Rp has basis D and ψ : Rn → Rp. Then we have the following
formulae:

(

x ; B
)(

φ ; BC
)(

ψ ; C D
)

=
(

ψ(φ(x)) ; D
)

;
(

φ ; BC
)(

ψ ; C D
)

=
(

ψφ ; BD
)

.

Just as previously described for vector spaces, if B and C are two bases for Rn, the matrix
(

idRn ; BC
)

effects a change of base:
(

x ; B
)(

idRn ; BC
)

=
(

x ; C
)

.

The ith row of
(

idRn ; BC
)

is the n-tuple of coefficients required to write bi as an R-linear

combination of the c1, . . . , cn. This is an n× n matrix with right inverse
(

idRn ; C B
)

. In case R
is commutative, these matrices are inverses. In the non-commutative case, there are complications:
a matrix may have a right (resp., left) inverse that is not a left (resp., right) inverse; see Jacobson,
Basic Algebra I, page 97, Exercise 2. Even worse, in the non-commutative case, it is possible for
Rm ∼= Rn with m 6= n; see Jacobson, page 171.

2

Diagonalizing integer matrices

Suppose A = {aij} is an m× n integer matrix.

How to add a multiple of one row (column) of A to another row (column). Let Tn
ij(k), i 6= j,

i, j ∈ {1, . . . , n}, be the n × n matrix with k in the (i, j)th position and 1s on the diagonal. The
inverse of Tn

ij(k) is Tn
ij(−k). Note that Tm

ij (k)A has the same rows as A, except for the ith row,

which is the ith row of A plus k times the jth row of A. Similarly, ATn
ij(k) has the same columns

as A, except for the jth column, which is the jth column of A plus k times the ith column of A.

How to switch two rows (columns) of A. Let Pn
ij be the n × n identity matrix with rows i and j

switched. The same matrix arises by switching columns i and j. Pn
ij is its own inverse. Notice that

Pm
ij A is the same as A, but with rows i and j switched. APn

ij is the same as A, but with columns
i and j switched.

How to multiply a row (column) by −1. Let Un
i be the diagonal matrix in which the iith entry

is −1 and all others are 1. Un
i is its own inverse. Um

i A is the same as A, but with its ith row
multiplied by −1. AUn

j is the same as A, but with its jth column multiplied by −1.

Column Step. By repeatedly multiplying A on the left by various matrices of the form Tm
ij (k) and

Pm
ij , we can bring it to the form

A′ =









a′11 a′12 · · · a′1n

0 a′22 · · · a′2n

...
...

...
...

0 a′m2 · · · a′mn









,

where the first column has zero in every place but the first and a′11 is the greatest common divisor
of the entries in the first column of A. The reason that we can do this is essentially that the GCD
of any finite set of integers can be expressed as a Z-linear combination of them. I will not specify
the precise steps used to select the matrices to multiply by. One might, for example, subtract (or
add) a row with the smallest (in absolute value) initial entry from the other rows, and do this over
and over until only one row with a non-zero initial entry remained. In examples that are done
by hand, it may be more convenient or faster to use some other method. The specific numbers
themselves may suggest a strategy.

Row Step. By repeatedly multiplying A on the right by various matrices of the form Tn
ij(k) and

Pn
ij , we can bring it to the form

A′′ =









a′′11 0 · · · 0
a′′21 a′′22 · · · a′′2n

...
...

...
...

a′′m1 dm2 · · · dmn









,

where the first row has zero in every place but the first and a′′11 is the greatest common divisor of
the entries in the first row of A.

We can perform these steps without multiplying rows or columns by −1, but it may be useful or
convenient to make some entries positive, and this can clearly be done by using Un

i .

3

Barring the possibility that some a
(s)
11 is zero, |a

(s+1)
11 | < |a

(s)
11 |. Thus, by repeatedly performing row

steps and column steps, we may bring A to the form

B =









b11 0 · · · 0
0 b22 · · · b2n

...
...

...
...

0 bm2 · · · bmn









,

where b11 is the greatest common divisor of all the elements in the first column and first row of A.

If some a
(s)
11 is zero, we may either make it non-zero by exchanging t

We an then apply the same process to the submatrix





b22 · · · b2n

...
...

...
bm2 · · · bmn



. We can do this “in

place” by multiplying B on the right and left by Tn
ij(k) and Pn

ij with i and j never equal to 1. We
get a matrix of the form:

B′ =













b11 0 0 · · · 0
0 c22 0 · · · 0
0 0 c33 · · · c3n

...
...

...
...

...
0 0 cm3 · · · cmn













.

Continuing, we get a diagonal matrix D and a relationship:

PAQ = D,

where P is m × m, Q is n × n and each is a product of matrices of the form Tij and Pij and
therefore is invertible.

Closing remarks. We have not required any conditions on the diagonal entries in PAQ. If the
entries are such that di|di+1 for i = 1, . . . , ℓ, ℓ ≤ m, and di = 0 for i > ℓ, then we say that the
matrix is in Smith Normal Form. We can assure that PAQ winds up in this form by a slightly
more complex algorithm than the one we described, but we do not need this detail to complete
our analysis of finitely-generated abelian groups.

4

