
M7210 Lecture 24 Monday October 17, 2012

Abelian Groups IV

We left off last time having finished preparations for the proof of:

Theorem. If S is subgroup of Z
n, then we can choose a new basis {b1, . . . , bn} of Z

n and a new
generating set {t1, . . . , tℓ} (ℓ ≤ n) for S such that for each i = 1, . . . , ℓ, ti is an integer multiple of
bi, i.e., ti = dibi for some di ∈ Z.

Proof . Let S ⊆ Z
n. We know from last Friday that S is finitely generated, so we have a Z-module

morphism α : Z
m → Z

n with image S. (We know that we may find a generating set for S with no
more than n elements, but we do not need to use a generating set for S that satisfies this.) Let E
be the standard basis for Z

m and let F be the standard basis for Z
n. Let A :=

(

α ; E F
)

. Then A
is an m× n matrix with the generators of S as rows. (That is, the rows of A are the generators of
S expressed as row vectors with respect to F .) By the diagonalization procedure described in the
last lecture, we may find an invertible1 m × m integer matrix P and an invertible1 n × n integer
matrix Q such that PAQ is diagonal. We may interpret P and Q as change-of-base matrices:

P =
(

idZm ; T E
)

,

Q =
(

idZn ; F B
)

,

where, B = {b1, . . . , bn} is the basis of Z
n whose elements are the rows of Q (i.e., the elements of

Z
n that are expressed by the rows of Q with respect to the standard basis) and T is the basis of

Z
m whose elements are the rows of P−1. We have:

PAQ =
(

idZm ; T E
)(

α ; E F
)(

idZn ; F B
)

=
(

α ; T B
)

.

The diagonal entries of PAQ that are non-zero will serve as the di referred to in the theorem. The
corresponding elements of T serve as the {t1, . . . , tℓ}. /////

Application to finitely-generated Z-modules

Suppose A is a finitely-generated Z-module. Let β : Z
n →→ A be a surjection, and let S ⊆ Z

n be
the kernel of this map. Select a data for Z

n and S as in the theorem. We will show that A is

isomorphic to ⊕ℓ
i=1

Z/diZ ⊕ Z
n−ℓ. Consider the morphism Z

n →
(

⊕ℓ
i=1

Z/diZ

)

⊕ Z
n−ℓ that sends

bi to 1 + diZ for i = 1, . . . , ℓ and sends bi to 1 for i = ℓ + 1, . . . , n. (What universal properties are
we using to guarantee we have a morphism with these properties?) The kernel of this morphism
is the subgroup of Z

n generated by dibi, i = 1, . . . , ℓ, i.e., it is S. Thus,

A ∼= Z
n/S ∼=

(

ℓ
⊕

i=1

Z/diZ

)

⊕ Z
n−ℓ. (1)

We have proved:

Proposition 1. Every finitely generated abelian group is isomorphic to a finite sum of cyclic
groups.

1 By “invertible”, we mean invertible over Z—i.e., the inverse has entries in Z.
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It is possible to diagonalize an integer matrix in many ways, so we may wind up representing our
group in different ways. Nonetheless, we can say much about the features of a decomposition of
a given finitely generated abelian group into cyclic summands that must be preserved in any sum
decomposition.

Uniqueness of the rank of the torsion-free part

Our first goal is to show is that the number of summands isomorphic to Z is independent of the
sum decomposition. It is helpful to give a definition.

Definition. Let A be an abelian group. The torsion subgroup of A is

{ a ∈ A | ∃n ∈ Z such that n 6= 0 and na = 0 }.

If the torsion subgroup of A is {0}, we say that A is torsion-free. If the torsion subgroup of A is
all of A, we say that A is torsion.

Lemma. If A is finitely generated and torsion-free, then A ∼= Z
r for a unique integer r ≥ 0.

Proof . We know that A ∼= Z
r for some r by Proposition 1. But we have already proved that

Z
r ∼= Z

s =⇒ r = s (see the discussion of rank in Lecture 22). /////

Lemma. Suppose A is finitely generated with torsion subgroup T . Then A/T torsion-free.

Proof . Exercise.

Remark. Under the hypotheses of the lemma, A/T is finitely generated so it’s isomorphic to Z
r

for a unique integer r ≥ 0.

Referring to (1), we see that the torsion subgroup of the sum is the part inside the parentheses.
Thus, n − ℓ must be the same for any sum decomposition. This establishes our first goal.

Some parenthetical remarks. We can prove directly (i.e., without using equation (1)) that
any finitely generated abelian group is a direct sum of its torsion subgroup and a free
abelian group

Proposition. Suppose A is finitely generated. Let T be the torsion subgroup of A. Then

A ∼= T ⊕ A/T.

Proof . Select {f1, . . . , fr} ⊆ A so that {f1 + T, . . . , fr + T} is a basis for A/T . Let F the
subgroup of A generated by these elements. Then F ∼= A/T . Moreover, T ∩F = {0} and
T + F = A, so A ∼= T ⊕ F . /////

Exercise. This exercise asks you to prove a general version of the idea used in the proof
of the proposition. (Look up “split exact sequence” to see how the fact you will verify is
often referred to.) Suppose A is any Z-module, K is a sub-Z-module and π : A → A/K is
the canonical quotient morphism. Suppose there is a Z-module morphism σ : A/K → A
such that πσ = idA/K . Show that A ∼= K ⊕ A/K.

Analysis of the torsion part

Our next goal is to examine the torsion part of the sum decomposition. First, we show that any
cyclic group can decomposed as a sum of cyclic groups of prime power order. This follows from

Proposition. Suppose p and q are integers greater than 1 and (p, q) = 1 (i.e., p and q are relatively
prime). Then Z/(pq)Z ∼= Z/pZ ⊕ Z/qZ.

Proof . Let a be a generator of Z/(pq)Z, i.e. Za = Z/(pq)Z . Then Z(qa) is cyclic of order p and
Z(pa) is cyclic of order q. Since (p, q) = 1, there are integers u, v such that up + vq = 1. Thus
Z(qa)+Z(pa) = Za. On the other hand, if na ∈ Z(qa)∩Z(pa), then n is divisible by both p and q,
so na = 0. Thus Z(qa)∩Z(pa) = {0}. The proposition follows by Lecture 19, Proposition 1./////
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