
M7210 Lecture 26 Monday October 22, 2012

Commutative Rings I

Reminder:

Definition. A ring is an abelian group A (with operations +, − and 0) equipped with a
multiplication A × A → A; (a, b) 7→ a b that satisfies the following axioms:
a) The multiplication is associative, i.e., for all a, b, c ∈ A, (ab)c = a(bc).
b) The multiplication distributes over addition, i.e., for all a, b, c ∈ A, a(b + c) = ab + ac and

(b + c)a = ba + ca.
c) The multiplication has an identity, i.e., there is 1A ∈ A such that 1Aa = a1A for all

a ∈ A.1

A function φ : A → B between rings is a ring homomorphism if it preserves addition, multi-
plication and identity: φ(a + a′) = φ(a) + φ(a′), φ(a a′) = φ(a)φ(a′), φ(1A) = 1B.

A is said to be commutative if ab = ba for all a, b ∈ A. In this lecture, all rings will be
commutative.

Examples of commutative rings.

1. Old friends. Commutative rings that have already appeared in this course include Z, Q,
R and C. For any integer n, Z/nZ is a commutative ring (with addition and multiplication
are both understood “mod n”).

2. Polynomial rings. If A is a commutative ring, then the ring of polynomials with
coefficients from A is the set of all sequences b : N → A that are non-zero for finitely
many i ∈ N = {0, 1, 2, . . .}. Such sequences are called polynomials. Addition is defined by
(b + c)i = bi + ci. Multiplication is defined by (bc)i =

∑
j+k=i bjck. The element of this ring

that is zero at all i ∈ N except i = 1, where its value is 1A, is often called the variable or the
indeterminate. When we say, “Let A[x] be the ring of polynomials with indeterminate x,” we
mean that the symbol “x” is to be used as a name for this element. A[x] contains a copy of
A, namely, the sequences c such that ci = 0 for all i except i = 0.2,3

1 Sometimes rings without identity are considered, but in these lectures, we will always
assume identity.

2 A polynomial ring is a particular kind of monoid ring . A monoid is a set equipped with
an associative operation that has an identity. If M is a commutative monoid and A is a
commutative ring, then A[M ] denotes the set of all functions b : M → A that are non-zero for
finitely many m ∈ M . Addition and multiplication are defined as for polynomials: assuming
the operation of M is denoted ∗, we let

(ab)m =
∑

{ akbℓ | k, ℓ ∈ M & k ∗ ℓ = m }.

3 Another generalization of the polynomials is the ring of formal power series with coeffi-
cients from A. This is defined just as the polynomial ring except that the condition that the
sequences be non-zero for finitely many i ∈ N is dropped. Multiplication still makes sense
because for any i ∈ N, there are only finitely many pairs (j, k) ∈ N2 such that j + k = i.
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3. Algebraic and Transcendental Numbers. Let θ be a complex number. Q[θ] denotes
the smallest subring of C that contains Q and θ. If the powers {1, θ, θ2, . . .} are not linearly
independent over Q, we say that θ is an algebraic number . If the powers of θ are linearly
independent over Q, then we say that θ is transcendental . In this case, Q[θ] is isomorphic to
the polynomial ring Q[x].

There are only countably many algebraic numbers because there are only countably many
polynomials with coefficients from Q and each has only finitely many roots. Therefore, the
set of algebraic numbers has measure zero. With probability 1, a randomly chosen complex
number is transcendental.

3.a. Algebraic Number Fields. We will show:

Proposition. If θ is an algebraic number, then: a) Q[θ] is finite-dimensional as a Q-vector

space, and b) Q[θ] is a field.

Proof of a). Let n is the least integer such that {1, θ, θ2, . . . , θn} is not independent over Q.
Then θ satisfies a polynomial equation with coefficients in Q of the following form:

0 = p(θ) = c0 + c1θ + · · ·+ cnθn, c0 6= 0, cn 6= 0. (1)

Thus, θn can be expressed as a Q-linear combination of 1, θ, . . . , θn−1. It follows (by induction)
that any positive power of θ can be expressed in manner.5 Thus, the Q-vector space spanned
by 1, θ, . . . , θn−1 is closed under multiplication.

We will continue with the proof of part b) next time.

5 Suppose that every power of θ up to the (n+k)th is a Q-linear combination of 1, θ, . . . , θn−1.
To see that θn+k+1 is also so expressible, multiply equation (1) by θk+1. This shows that θn+k+1

can be expressed as a Q-linear combination of lower powers, but each of these is a Q-linear
combination of 1, θ, . . . , θn−1.
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