
M7210 Lecture 27 Monday October 22, 2012

Commutative Rings: Examples from number theory (cont.)

3.a. Algebraic Number Fields.

Proposition. If θ is an algebraic number, then: a) Q[θ] is finite-dimensional as a Q-vector
space, and b) Q[θ] is a field.

Proof of a). Proved last time

Proof of b). Suppose that α ∈ Q[θ] \ {0}. Since Q[θ] has Q-dimension n, {1, α, α2, . . . αn}
satisfy a Q-linear relation, say:

0 = cjα
j + cj+1α

j+1 + · · · ckαk, 0 ≤ j < k ≤ n, cj , . . . , ck ∈ Q, cj 6= 0, ck 6= 0.

We can cancel αj and divide by cj to get:

0 = 1 +
cj+1

cj

α +
cj+2

cj

α2 + · · ·+ ck

cj

αk−j .

Thus,

1 = α

(−cj+1

cj

+
−cj+2

cj

α + · · · + −ck

cj

αk−j−1

)

.

3.b. Algebraic Integers. Suppose x ∈ C. We say that x is an algebraic integer if x satisfies
polynomial equation of the form

0 = Xn + an−1X
n−1 + · · · + a1X + a0, an−1, . . . , a0 ∈ Z.

We are requiring that the coefficient of the highest degree term be 1—such a polynomial is said
to be monic. We are also requiring that all other coefficients be in Z. Examples of algebraic

integers are i (a root of X2 +1),
√

2 (a root of X2 −2), −1+i
√

3

2
(a root of X3 −1) and any nth

root of unity (roots of Xn − 1 = 0). A complex number of the form a + b i, a, b ∈ Z is called
a Gaussian integer. Every Gaussian integer is an algebraic integer because a + b i is a root of
X2 − 2aX + a2 + b2.

Proposition. The algebraic integers form a subring of C.

Proof . (See Knapp, page 340.) We need to show that sums and products of algebraic integers
are algebraic integers. Suppose x and y are algebraic integers satisfying equations 0 = xm +
am−1x

m−1+ · · ·+a1x+a0 and 0 = yn +bn−1y
n−1 + · · ·+b1y+b0. Let M ⊂ C be the Z-module

generated by all products xiyj with 0 ≤ i < m and 0 ≤ j < n. Then by virtue of the monic
equations that x and y satisfy, xM ⊆ M and yM ⊆ M , so (x ± y)M ⊆ M and xyM ⊆ M .
The desired result then follows from

Lemma. Suppose A is a finitely-generated (additive) subgroup of C, and suppose z ∈ C. If
zA ⊆ A, then z is an algebraic integer.

Proof . A is finitely generated and torsion-free, so it is a free Z-module. Let z1, . . . , zr be a
basis. Since zzi ∈ A, the are unique integers cij such that

zzi =
n

∑

j=1

cijzj , i = 1, . . . , n.
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This equation says that z is an eigenvalue for the matrix C = {cij} with eigenvector





z1

...
zn



.

Thus det(zI − C) = 0. Now det(zI − C) = 0 is monic as a polynomial in z. The entries in C
are integers, so det(zI − C) has integer coefficients. Thus, z is an algebraic integer. /////

Let O denote the ring of algebraic integers. If Q[θ] is an algebraic number field, then its ring
of integers is O ∩ Q[θ].

Fact. O ∩ Q = Z. Proof. Any rational number may be expressed as p/q with p and q
integers, q > 0 and (p, q) = 1. Pick any rational number in O and write it this way. Then
0 = (p/q)n + an−1(p/q)n−1 + · · · + a0 for some ai ∈ Z. Multiply by qn to obtain 0 =
pn + an−1p

n−1q + · · · + a0q
n. This shows that pn is a multiple of q, and since (p, q) = 1 this

implied that q = 1.

Homework.

In preparation for material coming soon (Friday or next Monday), look up the definitions
of: “irreducible element”, “prime element”, “unique factorization domain”, “principal ideal
domain”.

The following are due Monday, October 29.

Exercise. Show that A[x] has the following universal mapping property. If T is any (commu-
tative) ring, t0 ∈ T is any element and φ : A → T is any ring homomorphism, then there is a
unique ring homomorphism φ : A[x] → T that agrees with φ on A and satisfies φ(x) = t0.

Exercise. Show that O∩Q[i] = Z[i]. (Z[i] is called the ring of Gaussian integers.) Hint. You
may use the fact that if a + bi, a, b ∈ R is a root of a polynomial with real coefficients, the
a − bi is also a root.

Exercise. Knapp, page 440, Problem 8.

Challenge. What is O ∩ Q[
√
−3]? (Hint: It is not Z[

√
−3]; there are more elements.)
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