MT7210 Lecture 27 Monday October 22, 2012

Commutative Rings: Examples from number theory (cont.)
3.a. Algebraic Number Fields.

Proposition. If 6 is an algebraic number, then: a) Q[f] is finite-dimensional as a Q-vector
space, and b) Q6] is a field.

Proof of a). Proved last time

Proof of b). Suppose that a € Q[f] \ {0}. Since Q[f] has Q-dimension n, {1,a,a?,...a"}
satisfy a Q-linear relation, say:

O:cjozj+cj+1aj+1+---ckak, 0<j<k<n,cj...,c €Q,c; #0, c #0.
We can cancel o/ and divide by ¢; to get:

0:1+ijla+ o 4o ki,
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3.b. Algebraic Integers. Suppose z € C. We say that x is an algebraic integer if x satisfies
polynomial equation of the form

O:X"+an_1X"_1+---+a1X+a0, Ape1y--.,00 € 2.

We are requiring that the coefficient of the highest degree term be 1—such a polynomial is said
to be monic. We are also requiring that all other coefficients be in Z. Examples of algebraic
integers are i (a root of X2 +1), v/2 (a root of X2 —2), —H—sz/ﬁ (a root of X? —1) and any n'"
root of unity (roots of X™ — 1 =0). A complex number of the form a + bi, a,b € Z is called
a Gaussian integer. Every Gaussian integer is an algebraic integer because a + bi is a root of
X? —2aX + a* + b2

Proposition. The algebraic integers form a subring of C.

Proof. (See Knapp, page 340.) We need to show that sums and products of algebraic integers
are algebraic integers. Suppose x and y are algebraic integers satisfying equations 0 = ™ +
12" dax+agand 0 = y" +by_1y" L4+ by +by. Let M C C be the Z-module
generated by all products z'y/ with 0 < i < m and 0 < j < n. Then by virtue of the monic
equations that x and y satisfy, «M C M and yM C M, so (x +y)M C M and xyM C M.
The desired result then follows from

Lemma. Suppose A is a finitely-generated (additive) subgroup of C, and suppose z € C. If
zA C A, then z is an algebraic integer.

Proof. A is finitely generated and torsion-free, so it is a free Z-module. Let zq,...,z. be a
basis. Since zz; € A, the are unique integers c¢;; such that

n
zZzi = E cijzi, t=1,...,n.
j=1

1



Z1
This equation says that z is an eigenvalue for the matrix C = {¢;;} with eigenvector

Zn
Thus det(z — C) = 0. Now det(z/ — C) = 0 is monic as a polynomial in z. The entries in C'
are integers, so det(z] — C) has integer coefficients. Thus, z is an algebraic integer. /]

Let O denote the ring of algebraic integers. If Q[f] is an algebraic number field, then its ring
of integers is O N Q[6].

Fact. ONQ = Z. Proof. Any rational number may be expressed as p/q with p and ¢
integers, ¢ > 0 and (p,q) = 1. Pick any rational number in @ and write it this way. Then
0 = (p/Q)" + an_1(p/q)" ! + -+ + ap for some a; € Z. Multiply by ¢" to obtain 0 =
P+ an_1p" " tq+ -+ apg™. This shows that p™ is a multiple of ¢, and since (p,q) = 1 this
implied that ¢ = 1.

Homework.

In preparation for material coming soon (Friday or next Monday), look up the definitions
of: “irreducible element”, “prime element”, “unique factorization domain”, “principal ideal
domain”.

The following are due Monday, October 29.

Exercise. Show that A[z] has the following universal mapping property. If 7" is any (commu-
tative) ring, to € T'is any element and ¢ : A — T is any ring homomorphism, then there is a
unique ring homomorphism ¢ : A[z] — T that agrees with ¢ on A and satisfies ¢(z) = to.

Exercise. Show that ONQJi] = Z[i]. (Z]i] is called the ring of Gaussian integers.) Hint. You
may use the fact that if a + bi, a,b € R is a root of a polynomial with real coefficients, the
a — bi is also a root.

Exercise. Knapp, page 440, Problem 8.
Challenge. What is O N Q[v/—3]? (Hint: It is not Z[\/—3]; there are more elements.)



