M7210 Lecture 27

Commutative Rings: Examples from number theory (cont.)

3.a. Algebraic Number Fields.

Proposition. If θ is an algebraic number, then: a) $\mathbb{Q}[\theta]$ is finite-dimensional as a \mathbb{Q} -vector space, and b) $\mathbb{Q}[\theta]$ is a field.

Proof of a). Proved last time

Proof of b). Suppose that $\alpha \in \mathbb{Q}[\theta] \setminus \{0\}$. Since $\mathbb{Q}[\theta]$ has \mathbb{Q} -dimension $n, \{1, \alpha, \alpha^2, \dots, \alpha^n\}$ satisfy a \mathbb{Q} -linear relation, say:

 $0 = c_j \alpha^j + c_{j+1} \alpha^{j+1} + \dots + c_k \alpha^k, \ 0 \le j < k \le n, \ c_j, \dots, c_k \in \mathbb{Q}, \ c_j \ne 0, \ c_k \ne 0.$

We can cancel α^j and divide by c_i to get:

$$0 = 1 + \frac{c_{j+1}}{c_j}\alpha + \frac{c_{j+2}}{c_j}\alpha^2 + \dots + \frac{c_k}{c_j}\alpha^{k-j}$$

Thus,

$$1 = \alpha \left(\frac{-c_{j+1}}{c_j} + \frac{-c_{j+2}}{c_j} \alpha + \dots + \frac{-c_k}{c_j} \alpha^{k-j-1} \right).$$

3.b. Algebraic Integers. Suppose $x \in \mathbb{C}$. We say that x is an algebraic integer if x satisfies polynomial equation of the form

$$0 = X^{n} + a_{n-1}X^{n-1} + \dots + a_{1}X + a_{0}, \ a_{n-1}, \dots, a_{0} \in \mathbb{Z}.$$

We are requiring that the coefficient of the highest degree term be 1—such a polynomial is said to be *monic*. We are also requiring that all other coefficients be in \mathbb{Z} . Examples of algebraic integers are *i* (a root of $X^2 + 1$), $\sqrt{2}$ (a root of $X^2 - 2$), $\frac{-1+i\sqrt{3}}{2}$ (a root of $X^3 - 1$) and any n^{th} root of unity (roots of $X^n - 1 = 0$). A complex number of the form a + bi, $a, b \in \mathbb{Z}$ is called a Gaussian integer. Every Gaussian integer is an algebraic integer because a + bi is a root of $X^2 - 2aX + a^2 + b^2$.

Proposition. The algebraic integers form a subring of \mathbb{C} .

Proof. (See Knapp, page 340.) We need to show that sums and products of algebraic integers are algebraic integers. Suppose x and y are algebraic integers satisfying equations $0 = x^m + a_{m-1}x^{m-1} + \cdots + a_1x + a_0$ and $0 = y^n + b_{n-1}y^{n-1} + \cdots + b_1y + b_0$. Let $M \subset \mathbb{C}$ be the \mathbb{Z} -module generated by all products $x^i y^j$ with $0 \le i < m$ and $0 \le j < n$. Then by virtue of the monic equations that x and y satisfy, $xM \subseteq M$ and $yM \subseteq M$, so $(x \pm y)M \subseteq M$ and $xyM \subseteq M$. The desired result then follows from

Lemma. Suppose A is a finitely-generated (additive) subgroup of \mathbb{C} , and suppose $z \in \mathbb{C}$. If $zA \subseteq A$, then z is an algebraic integer.

Proof. A is finitely generated and torsion-free, so it is a free \mathbb{Z} -module. Let z_1, \ldots, z_r be a basis. Since $zz_i \in A$, the are unique integers c_{ij} such that

$$zz_i = \sum_{j=1}^n c_{ij} z_j, \ i = 1, \dots, n.$$

This equation says that z is an eigenvalue for the matrix $C = \{c_{ij}\}$ with eigenvector $\begin{pmatrix} z_1 \\ \vdots \\ z_n \end{pmatrix}$.

Thus $\det(zI - C) = 0$. Now $\det(zI - C) = 0$ is monic as a polynomial in z. The entries in C are integers, so $\det(zI - C)$ has integer coefficients. Thus, z is an algebraic integer. /////

Let \mathcal{O} denote the ring of algebraic integers. If $\mathbb{Q}[\theta]$ is an algebraic number field, then its ring of integers is $\mathcal{O} \cap \mathbb{Q}[\theta]$.

Fact. $\mathcal{O} \cap \mathbb{Q} = \mathbb{Z}$. *Proof.* Any rational number may be expressed as p/q with p and q integers, q > 0 and (p,q) = 1. Pick any rational number in \mathcal{O} and write it this way. Then $0 = (p/q)^n + a_{n-1}(p/q)^{n-1} + \cdots + a_0$ for some $a_i \in \mathbb{Z}$. Multiply by q^n to obtain $0 = p^n + a_{n-1}p^{n-1}q + \cdots + a_0q^n$. This shows that p^n is a multiple of q, and since (p,q) = 1 this implied that q = 1.

Homework.

In preparation for material coming soon (Friday or next Monday), **look up** the definitions of: "irreducible element", "prime element", "unique factorization domain", "principal ideal domain".

The following are due Monday, October 29.

Exercise. Show that A[x] has the following universal mapping property. If T is any (commutative) ring, $t_0 \in T$ is any element and $\phi : A \to T$ is any ring homomorphism, then there is a unique ring homomorphism $\overline{\phi} : A[x] \to T$ that agrees with ϕ on A and satisfies $\overline{\phi}(x) = t_0$.

Exercise. Show that $\mathcal{O} \cap \mathbb{Q}[i] = \mathbb{Z}[i]$. ($\mathbb{Z}[i]$ is called the *ring of Gaussian integers*.) Hint. You may use the fact that if a + bi, $a, b \in \mathbb{R}$ is a root of a polynomial with real coefficients, the a - bi is also a root.

Exercise. Knapp, page 440, Problem 8.

Challenge. What is $\mathcal{O} \cap \mathbb{Q}[\sqrt{-3}]$? (Hint: It is not $\mathbb{Z}[\sqrt{-3}]$; there are more elements.)