
M7210 Lecture 28 Friday October 26, 2012

Commutative Rings III

We assume all rings are commutative and have multiplicative identity (different from 0).

Units and zero-divisors

Definition. Let A be a commutative ring and let a ∈ A.

i) a is called a unit if a 6= 0A and there is b ∈ A such that ab = 1A.

ii) a is called a zero-divisor if a 6= 0A and there is non-zero b ∈ A such that ab = 0A. A
(commutative) ring with no zero-divisors is called an integral domain.

Remark. In the zero ring Z = {0}, 0Z = 1Z . This is an annoying detail that our definition must
take into account, and this is why the stipulation “a 6= 0A” appears in i). The zero ring plays a
very minor role in commutative algebra, but it is important nonetheless because it is a valid model
of the equational theory of rings-with-identity and it is the final object in the category of rings. We
exclude this ring in the discussion below (and occasionally include a reminder that we are doing
so).

Fact. In any (non-zero commutative) ring R the set of zero-divisors and the set of units are
disjoint. Proof . Let u ∈ R \ {0}. If there is z ∈ R such that uz = 0, then for any t ∈ R, (tu)z = 0.
Thus, there is no t ∈ R such that tu = 1.

Fact. Let R be a ring. The set U(R) of units of R forms a group.

Examples. The units in Z are 1 and −1. In Z[i], the units are 1, i,−1,−i. In a field, all non-zero
elements are units. If A is a domain, the units of A[x] are the units of A, because when A is a
domain, the degree of the degree of the product of two polynomials is the sum of the degrees of
each separately). In Z/nZ, the units are the residues of the integers that are prime to n. Every
other non-zero element of Z/nZ is a zero-divisor.

Example. A is not a domain, then there may be units in A[x] that are not in A. For example, if
A = Z/4Z, then

(

1 + 2 x
)2

= 1 + 4 x + 4 x2 = 1,

Exercise 1. Show that 1 + px is a unit in Z/pn
Z. What are the units in (Z/4Z)[x]? What are

the units in (Z/pn
Z)[x]?

Definition/Exercise. Let R be a ring. Two elements s, t ∈ R are said to be associates if there
is a unit u ∈ R such that s = ut. Show that being associates is an equivalence relation. Show that
equivalence classes may be multiplied unambiguously.

Fact. Every field is an integral domain. Proof . All non-zero elements of a field are units, so there
are no zero-divisors.

Exercise 2. A finite integral domain is a field.

Exercise 3. Suppose D is an integral domain that contains a field F . Suppose further that D is
finite-dimensional over F . Can you conclude that D is a field?
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Proposition. Every integral domain is a subring of a field.

Comment. More important than the fact itself is the way we construct a field from any integral
domain. This is described in the proof.

Proof . Let A be an integral domain, and let S = A \ {0A} We define a relation ∼ on A × S as
follows:

(a1, s1) ∼ (a2, s2) :⇔ a1s2 = a2s1.

We will show this is an equivalence relation. It is obviously reflexive and symmetric. In order to
prove transitivity, we use the fact that if a product of elements of A is 0, then one of the factors
is zero. Suppose a1s2 = a2s1 and a2s3 = a3s2 Multiplying the first equation by s3 and the second
by s1, we get a1s2s3 = a3s1s2, so (a1s3 − a3s1)s2 = 0. But by assumption, s2 6= 0, so a1s3 = a3s1.
We denote the equivalence class of (a, s) by a

s
, and the set of all equivalence classes is denoted

S−1A. We now define addition on S−1A by

a1

s1

+
a2

s2

:=
a1s2 + a2s1

s1s2

,

and multiplication by
a1

s1

·
a2

s2

:=
a1a2

s1s2

.

These operations make S−1A into a ring that contains a copy of A, namely { a

1
| a ∈ A }. The

proof is routine, but requires a lot of checking; see the exercise below. Every non-zero element of
S−1A has an inverse, since if a 6= 0, then

a

s
·
s

a
=

as

as
= 1S−1A.

Thus S−1A is a field that contains A. /////

Exercise 4. Finish the proof.

Exercise 5. The field constructed in the proof is called the fraction field of A. Show that the
embedding of A in its fraction field has the following universal property. If φ : A → F is any
injective ring homomorphism and F is a field, then there is a unique extension of φ to the fraction
field of A.

Ideals and Prime and Maximal Ideals

Warm-up. Suppose A is a ring. Then for all a ∈ A, a0A = 0A.

Reminder. Let A be a commutative ring. A subgroup of the additive group of A with the property
that

for all a ∈ A, and all y ∈ I, ay ∈ I (1)

is called an ideal .1

Fact. The kernel of any ring homomorphism is an ideal. If I ⊆ A is an ideal, the set of (additive)
cosets of I has a multiplication defined unambiguously by (a + I)(b + I) = ab + I, and with this
operation A/I is a ring and a 7→ a + I is a ring homomorphism.

1 If A is not assumed commutative, this is called a left ideal. An ideal must be closed under
both “out-in” and “in-out” multiplication, i.e., it must satisfy (1) and also for all a ∈ A, and all
y ∈ I, we must have ya ∈ I.

2


