
M7210 Lecture 29 Monday October 29, 2012

Ideals in Commutative Rings

We assume all rings are commutative and have multiplicative identity (different from 0).

Ideals

Suppose A is a ring.

Fact. Then for all a ∈ A, a0A = 0A.

Definition. A subgroup of the additive group of A with the property that

for all a ∈ A, and all y ∈ I, ay ∈ I (1)

is called an ideal .1

Fact. The kernel of any ring homomorphism is an ideal.

Fact. If I ⊆ A is an ideal, the set of (additive) cosets of I has a multiplication defined
unambiguously by (a + I)(b + I) = ab + I, and with this operation A/I is a ring and
q : A → A/I; a 7→ a + I is a ring homomorphism.

Exercise. Let { Ib | b ∈ B } be a collection of ideals indexed by a set B. For each
b ∈ B, let qB : A → A/Ib be the canonical surjection. These homomorphisms induce a
ring homomorphism Q : A → ∏

b∈B
A/Ib. Show that the kernel of Q is the intersection⋂

b∈B
Ib.

The largest ideal in A is A itself. The smallest ideal is {0}. Any intersection of ideals in
A is an ideal. Thus, given any subset S ⊆ A, there is a smallest ideal containing S. This
is called the ideal generated by S. The ideal generated by a single element a ∈ A is often
denoted (a) or aA, and the ideal generated by a finite set {a1, . . . , ak} may be denoted
(a1, . . . , ak) or a1A + · · ·+ akA.

Fact. (a) = { ax | x ∈ A }. Proof. The containment { ax | x ∈ A } ⊆ (a) follows from
“closure under in-out multiplication”. So, it is enough to show that { ax | x ∈ A } is an
ideal. Since 0 = a0, this set is non-empty, and since ax− ay = a(x− y), it is closed under
subtraction. So, it’s a subgroup of A, and finally since a′(ax) = a(a′x), it’s an ideal./////

Exercise. Show that (a1, . . . , ak) = { a1x1 + · · ·+ akxk | x1, . . . , xk ∈ A }.
Exercise. Suppose I and J are ideals of A. Then the ideal generated by I ∪ J is

I + J := { y + z | y ∈ I & z ∈ J }.

Exercise. (a) = A if and only if a is a unit.

1 If A is not assumed commutative, this is called a left ideal. In the non-commutative
case, an ideal is required to be closed under both “out-in” and “in-out” multiplication, i.e.,
it must satisfy (1) and also for all a ∈ A, and all y ∈ I, we must have ya ∈ I.
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Prime and Maximal Ideals

Definition. An ideal I ⊂ A is said to be maximal if the ideal generated by I and any
element not in I is all of A. If S is a subset of A, an ideal I ⊂ A is said to be maximal
disjoint from S if the ideal generated by I and any element not in I contains some element
of S.

Definition. An ideal I ⊂ A is said to be prime if its complement contains 1 and is closed
under multiplication.

Fact. I is maximal if and only if A/I is a field. I is prime if and only if A/I is a domain.

Proposition. Suppose S ⊆ A contains 1, does not contain 0 and is closed under multi-

plication. Then,

a) there is an ideal maximal disjoint from S, and

b) any ideal maximal disjoint from S is prime.

Proof . a) We can approach this two ways: either take it as an axiom, or derive it from
Zorn’s Lemma. Zorn’s Lemma is interesting from the perspective of set theory, but we
learn very little of algebraic interest by applying it. Nonetheless, it is important to know
how the typical application runs. So, let show this. There is at least one ideal disjoint
from S—namely {0}—and if C = { I ⊂ I ′ ⊂ I ′′ ⊂ · · · } is any ascending chain of ideals
each of which is disjoint from S, then ∪C is an ideal disjoint from S—for if x, y ∈ ∪C,
then both x and y belong to some ideal in the chain, and hence their difference is in the
union of the chain, and also for any a ∈ A, and x ∈ ∪C, ax ∈ ∪C. Now, Zorn’s Lemma
says that if these conditions are satisfied, then there is an ideal disjoint from S such that
no properly larger ideal is disjoint from S.

b) Suppose I is maximal disjoint from S. Let a and a′ be any elements of A \ I. We show
aa′ 6∈ I. Select elements y, y′ ∈ I and x, x′ ∈ A such that y + ax ∈ S and y′ + a′x′ ∈ S.
Then yy′ +axy′ +a′x′y +axa′x′ ∈ S. If aa′ ∈ I, then yy′ +axy′ +a′x′y +axa′x′ ∈ I. But
I ∩ S = ∅. So aa′ 6∈ I. /////

Exercise. An element a ∈ A is said to be nilpotent if there is n ∈ N such that an = 0.
a) Show that the difference of two nilpotent elements of A is nilpotent and that any

multiple of a nilpotent element is nilpotent. Conclude that the set of all nilpotent
elements of A is an ideal. (This is called the nil radical of A.)

b) Show that every prime ideal of A contains the nil radical of A. Show that if a ∈ A is
not nilpotent, then there is a prime ideal that does not contain a. Conclude that the
nil radical of A is the intersection of all the prime ideals of A.

c) If I ⊂ A is an ideal, let

√
I := { a ∈ A | ∃n ∈ N an ∈ I }.

Show that
√

I is the intersection of all the prime ideals of A that contain I.
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