
M7210 Lecture 30 Wednesday October 31, 2012

Factorization in Commutative Rings

We assume all rings are commutative and have multiplicative identity (different from 0).

This lecture is about factorization—i.e., about the multiplicative structure of a ring. Ring addition
plays no role in basic parts of the theory, so we introduce an abstraction that enables us to focus
on just what we need:

Definition. A monoid is a set equipped with an associative operation and an identity element for
this operation.

Thus, a monoid is like a group, but we do not assume that elements have inverses—though some
might. If A is a (commutative) ring, then the elements of A with the operation of multiplication
form a commutative monoid. If A is a domain, then A∗ := A\ {0} is also a monoid. If A is a field,
then A∗ is a group. Thus, if A is a domain, then A∗ is a commutative submonoid of a commutative
group.

Exercise (not to hand in). Let M be a commutative monoid. We say that M is cancellative if
ab = ab′ implies b = b′ for all a, b, b′ ∈ M . A commutative group is cancellative by virtue of the
presence of inverses, and thus every submonoid of a commutative group is cancellative. Here is
the task. Suppose that M is cancellative. Show that there is a commutative group that contains
M and is generated by M , and that any two groups that contain M and are generated by M are
isomorphic by an isomorphism that restricts to the identity on M . (Hint: Copy the construction
of the field of fractions.)

Throughout the following, we let M be a cancellative commutative monoid. The elements of M

that have inverses will be called units. Clearly, the units of M form a group.

Definition. Suppose a and b are elements of M .
i) If a = ub for some unit u, we call a and b associates.

ii) We say a divides b—in symbols, a|b—if there is c ∈ M such that b = ac.
iii) We say b is irreducible if b is not a unit and for any relation of the form b = ac, either a or c

is a unit.
iv) We say b is prime if b is not a unit and whenever b|ac, either b|a or b|c.

The same definitions may be made for the non-zero elements of an integral domain. Indeed, one
could complain that introducing the language of monoids is just extra baggage. But I would counter
that the extra baggage is all the structure in an integral domain that is unused in developing the
theory of factorization. Monoids help us focus attention where it is needed.

Fact. Any prime element of M is irreducible. (Reminder: M is cancellative.) Proof. Suppose b

is prime and x, y ∈ M . If b = xy, then b|x or b|y. Without loss of generality, we may assume b|x.
Then, x = bz for some z ∈ M . Then b = bzy, so 1 = zy, so y is a unit. /////

Unique Factorization

Definition. Let M be a cancellative commutative monoid. We say M has unique factorization if
the following two conditions hold:

UF1: Every non-unit of M is a finite product of irreducible elements.

UF2: If a non-unit of M is factored into irreducibles in two ways, then by rearrangement and
multiplication of the factors by units, the two factorizations may be made the same.
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Proposition. Suppose M satisfies UF1. Then M satisfies UF2 if and only if it satisfies:

UF2′: Every irreducible element of M is prime.

Proof . UF2 ⇒ UF2′: Suppose p is irreducible. If p|ab (ab 6= 0) then ab = px for some x ∈ M .
Factoring a, b and x into irreducibles:

(a1 · · · ak)(b1 · · · bℓ) = p(x1 · · · xm).

By UF2, p is an associate of one of the ai or bj , so either p|a or p|b.

UF2′ ⇒ UF2: Suppose we have two products of irreducibles p1 · · · pm = q1 · · · qn. We need to show
that m = n and after rearrangement pi is an associate of qi. By UF2′, p1 is prime, so p1|qi for
some i. Rearranging, we may assume i = 1. Then q1 = x1p1 for some x1. Since qi is irreducible,
x1 is a unit. The result follows by induction. (But mind the details! What does the m = 1 case
look like?)

Comment. This all translates directly to domains. If A is a domain, we call A a unique factorization
domain (or UFD for short) if the monoid A∗ satisfies UF1 and UF2. We call these ring-theoretic
conditions UFD1 and UFD2.

Principal Ideal Domains

An ideal I of a ring A is said to be principal if it is generated by a single element.

Proposition. Let A be an integral domain. A principal ideal (p) ⊆ A is prime (as an ideal) if
and only if p is prime (as an element).

Proof . If p is a unit, then (p) is not prime as an ideal and p is not prime as an element. Confining
attention to no-zero non-units p: (p) is prime ⇔ for all a, b ∈ A, ab ∈ (p) implies a ∈ (p) or b ∈ (p)
⇔ for all a, b ∈ A, p | ab implies p | a or p | b.

An integral domain, such as Z or F[x] (F a field), in which every ideal is principal is called a
principal ideal domain, or PID for short.

Proposition. Every PID is a UFD.

Proof . (PID ⇒ UFD1.) Suppose A is a domain that fails to satisfy UF1. Then A contains a
non-zero non-unit a that does not have a finite factorization into irreducibles. Then, we may write
a = b1a1 where b1 and a1 are non-zero non-units. Moreover, at least one of these must fail to have
a finite factorization into irreducibles, and choosing notation appropriately, we may assume that
a1 fails. Then a1 = b2a2, where b2 and a2 are non-zero non-units and a2 does not have a finite
factorization into irreducibles. We can continue in this fashion indefinitely. Then the ideals

(a1) ⊂ (a2) ⊂ · · ·

form an ascending chain in which every containment is proper. The union of this chain is an ideal,
but it cannot be principal because if it were, the generator would have to lie in some (ai) and from
this point on the containments would not be proper. Thus A is not a PID.

Proof . (PID ⇒ UF2′.) Suppose A is a PID and a ∈ A is irreducible. We show (a) is maximal, so
(a) is prime, so a is prime. Let I be an ideal properly larger than (a). Since A is a PID, I = (c)
for some c ∈ A. Then, a = bc, so either b or c is a unit. But if b is a unit, (a) = (c). Thus I = A.

Homework (due Monday, 11/6) Page 441-3: 12, 16, 18, 27, 28.
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