
M7210 Lecture 37 Monday, November 19, 2012

Characteristic and minimum polynomials

Using the same notation as in the previous lecture, the characteristic polynomial of A is

f(x) = det(xI − A) = dn−s+1dn−s+2 · · ·dn(x),

and the minimum polynomial of A is dn(x).

Recall that F[x]zi
∼= F[x]

/(

di(x)
)

. Therefore, di(x)zi = 0. Since di(x)|dj(x) if i < j,
dn(x)zi = 0 for all i. It follows that dn(x)xjzi = 0 for all i and j. Since the every element
of V is a linear combination of some xjzis for various i and j, it follows that dn(x)v = 0
for all v ∈ V . Thus, dn(L) = 0. This is a stronger statement than:

Theorem. (Cayley-Hamilton.) Suppose L : V → V is a linear map, A is the matrix for
L (with respect to a basis) and f(x) = det(xI − A). Then f(L) = 0.

The Cayley-Hamilton theorem can be proved directly, and it is true not just for endomor-
phisms of a vector space, but for endomorphisms of any finitey-generated module over any
commutative ring. In the following, R will be a commutative ring with 1 and M will be a

finitely-generated R-module.

Theorem. (Generalized Cayley-Hamilton; see Eisenbud, Commutative Algebra, p. 120.)
Let J ⊂ R an ideal and let φ : M → M be an R-module endomorphism such that
φ(M) ⊆ JM . Then there is a monic polynomial p(x) ∈ R[x],

p(x) = xn + p1x
n−1 + · · ·+ pn, with pi ∈ J i,

such that p(φ) = 0.

Comment. The theorem is meaningful and informative even in the case that J = R, but
we get useful additional information when J is a proper ideal. Reminder: JM is the
submodule of M generated by { ym | y ∈ J, m ∈ M }. It consists of all sums

∑k

i=1
yimi,

where k ∈ N, yi ∈ J and mi ∈ M .

Proof. Let m1, . . . , mn be a finite set of generators for M and let A be a matrix expressing
φ with respect to these generators:

φ(mi) =
∑

j

aijmj , with aij ∈ J .

(Note that the A is not unique, nor is every n × n matrix with entries from R necessarily
associated with and endomorphism. These things are true if the mi form a basis for M ,
but we have not assumed that they do, nor even that M has a basis.) Now, regard M as
an R[x]-module by letting x act as φ, i.e., xm := φ(m), for m ∈ M . Let m be the column
vector whose entries are the mj . If I is the n × n identity matrix, then

(xI − A)m = 0.
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If we multiply on the left by the matrix of cofactors of xI − A, we get

[

det(xI − A)
]

I · m = 0.

Let p(x) := det(xI − A). The previous line shows that p(x)mj = p(φ)mj = 0 for all mj .
Accordingly p(φ) = 0. It is clear from the definition of the determinant that the coefficient
in p of xi is in Jn−i. /////

Corollary. If α : M → M is a surjective homomorphism of R-modules, then α is an
isomorphism. (We are assuming that M is finitely-generated. This is not true otherwise.)

Proof . We will apply Cayley-Hamilton with the ring being R[t]. Regard M as an R[t]-
module by letting tm = α(m). For the ideal J we take (t) ⊂ R[t]. Since α is surjective,
IM = M . For the endomorphism φ, we take idM . The theorem gives us a polynomial
q(t, x) ∈ R[t][x] such that q(t, idM ) = 0. Now,

q(t, x) = xn + q1(t)x
n−1 + · · · + qn(t), with qi(t) ∈ (ti).

This means that each qi(t) has zero constant term. Thus, q(t, idM) = 0 is of the form
(1−Q(t)t) for some Q(t) ∈ R[t] and so Q(t)t = tQ(t) = 1. Thus Q(α) = α−1. Since α has
an inverse, it is an isomorphism. /////

Corollary. Any set F = {f1, . . . , fn} ⊆ Rn that generates Rn forms a free basis.

Proof . Define β : Rn → Rn by β(ei) = fi, where {e1, . . . , en} is the standard basis. Then
β is surjective, hence an isomorphism, so F is a free basis. /////

Corollary. Any basis of Rn has n elements.

Proof . Suppose G = {g1, . . . , gm} ⊆ Rn generates Rn. If m < n, then let gm+1 = · · · =
gn = 0, and let G′ = {g1, . . . , gn}. Then by the first part of the corollary, G′ is a free
basis—but this is absurd. Thus, any generating set (hence, any free basis) of Rn must
have at least n elements. If Rn contained a free basis with s ≥ n elements, then Rn ∼= Rs.
The same argument shows that n cannot be strictly less than s. Thus, any free basis of
Rn has n elements. /////
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