M7210 Lecture 37

Characteristic and minimum polynomials

Using the same notation as in the previous lecture, the characteristic polynomial of A is

$$f(x) = \det(xI - A) = d_{n-s+1}d_{n-s+2}\cdots d_n(x),$$

and the minimum polynomial of A is $d_n(x)$.

Recall that $\mathbb{F}[x]z_i \cong \mathbb{F}[x]/(d_i(x))$. Therefore, $d_i(x)z_i = 0$. Since $d_i(x)|d_j(x)$ if i < j, $d_n(x)z_i = 0$ for all *i*. It follows that $d_n(x)x^jz_i = 0$ for all *i* and *j*. Since the every element of *V* is a linear combination of some x^jz_i s for various *i* and *j*, it follows that $d_n(x)v = 0$ for all $v \in V$. Thus, $d_n(L) = 0$. This is a stronger statement than:

Theorem. (Cayley-Hamilton.) Suppose $L: V \to V$ is a linear map, A is the matrix for L (with respect to a basis) and $f(x) = \det(xI - A)$. Then f(L) = 0.

The Cayley-Hamilton theorem can be proved directly, and it is true not just for endomorphisms of a vector space, but for endomorphisms of any finitey-generated module over any commutative ring. In the following, R will be a commutative ring with 1 and M will be a finitely-generated R-module.

Theorem. (Generalized Cayley-Hamilton; see Eisenbud, Commutative Algebra, p. 120.) Let $J \subset R$ an ideal and let $\phi : M \to M$ be an *R*-module endomorphism such that $\phi(M) \subseteq JM$. Then there is a monic polynomial $p(x) \in R[x]$,

$$p(x) = x^n + p_1 x^{n-1} + \dots + p_n, \text{ with } p_i \in J^i,$$

such that $p(\phi) = 0$.

Comment. The theorem is meaningful and informative even in the case that J = R, but we get useful additional information when J is a proper ideal. Reminder: JM is the submodule of M generated by $\{ym \mid y \in J, m \in M\}$. It consists of all sums $\sum_{i=1}^{k} y_i m_i$, where $k \in \mathbb{N}, y_i \in J$ and $m_i \in M$.

Proof. Let m_1, \ldots, m_n be a finite set of generators for M and let A be a matrix expressing ϕ with respect to these generators:

$$\phi(m_i) = \sum_j a_{ij}m_j$$
, with $a_{ij} \in J$.

(Note that the A is not unique, nor is every $n \times n$ matrix with entries from R necessarily associated with and endomorphism. These things are true if the m_i form a basis for M, but we have not assumed that they do, nor even that M has a basis.) Now, regard M as an R[x]-module by letting x act as ϕ , i.e., $xm := \phi(m)$, for $m \in M$. Let **m** be the column vector whose entries are the m_j . If I is the $n \times n$ identity matrix, then

$$(xI - A)\mathbf{m} = 0.$$

If we multiply on the left by the matrix of cofactors of xI - A, we get

$$\left[\det(xI - A)\right]I \cdot \mathbf{m} = 0.$$

Let $p(x) := \det(xI - A)$. The previous line shows that $p(x)m_j = p(\phi)m_j = 0$ for all m_j . Accordingly $p(\phi) = 0$. It is clear from the definition of the determinant that the coefficient in p of x^i is in J^{n-i} .

Corollary. If $\alpha : M \to M$ is a surjective homomorphism of *R*-modules, then α is an isomorphism. (We are assuming that *M* is finitely-generated. This is not true otherwise.)

Proof. We will apply Cayley-Hamilton with the ring being R[t]. Regard M as an R[t]-module by letting $tm = \alpha(m)$. For the ideal J we take $(t) \subset R[t]$. Since α is surjective, IM = M. For the endomorphism ϕ , we take id_M . The theorem gives us a polynomial $q(t, x) \in R[t][x]$ such that $q(t, id_M) = 0$. Now,

$$q(t,x) = x^n + q_1(t)x^{n-1} + \dots + q_n(t)$$
, with $q_i(t) \in (t^i)$.

This means that each $q_i(t)$ has zero constant term. Thus, $q(t, id_M) = 0$ is of the form (1 - Q(t)t) for some $Q(t) \in R[t]$ and so Q(t)t = tQ(t) = 1. Thus $Q(\alpha) = \alpha^{-1}$. Since α has an inverse, it is an isomorphism. /////

Corollary. Any set $\mathcal{F} = \{f_1, \ldots, f_n\} \subseteq \mathbb{R}^n$ that generates \mathbb{R}^n forms a free basis.

Proof. Define $\beta : \mathbb{R}^n \to \mathbb{R}^n$ by $\beta(e_i) = f_i$, where $\{e_1, \ldots, e_n\}$ is the standard basis. Then β is surjective, hence an isomorphism, so \mathcal{F} is a free basis. /////

Corollary. Any basis of \mathbb{R}^n has *n* elements.

Proof. Suppose $\mathcal{G} = \{g_1, \ldots, g_m\} \subseteq \mathbb{R}^n$ generates \mathbb{R}^n . If m < n, then let $g_{m+1} = \cdots = g_n = 0$, and let $\mathcal{G}' = \{g_1, \ldots, g_n\}$. Then by the first part of the corollary, \mathcal{G}' is a free basis—but this is absurd. Thus, any generating set (hence, any free basis) of \mathbb{R}^n must have at least n elements. If \mathbb{R}^n contained a free basis with $s \ge n$ elements, then $\mathbb{R}^n \cong \mathbb{R}^s$. The same argument shows that n cannot be strictly less than s. Thus, any free basis of \mathbb{R}^n has n elements.