MT7210 Lecture 37 Monday, November 19, 2012

Characteristic and minimum polynomials

Using the same notation as in the previous lecture, the characteristic polynomial of A is
f(x) =det(xl — A) = dp_s11dn—st2 - dn(z),

and the minimum polynomial of A is d,,(x).

Recall that F[z]z; & Flz]/(d;(z)). Therefore, d;(z)z; = 0. Since d;(x)|d;(z) if i < j,
dy(2)z; = 0 for all i. It follows that d,, (z)z?2; = 0 for all i and j. Since the every element
of V is a linear combination of some x72;s for various i and j, it follows that d,(x)v = 0
for all v € V. Thus, d,,(L) = 0. This is a stronger statement than:

Theorem. (Cayley-Hamilton.) Suppose L : V — V is a linear map, A is the matrix for
L (with respect to a basis) and f(x) = det(xl — A). Then f(L) = 0.

The Cayley-Hamilton theorem can be proved directly, and it is true not just for endomor-
phisms of a vector space, but for endomorphisms of any finitey-generated module over any
commutative ring. In the following, R will be a commutative ring with 1 and M will be a
finitely-generated R-module.

Theorem. (Generalized Cayley-Hamilton; see Eisenbud, Commutative Algebra, p. 120.)
Let J C R an ideal and let ¢ : M — M be an R-module endomorphism such that
¢(M) C JM. Then there is a monic polynomial p(x) € R|z],

p(x) =z" +prz” 4 4 p,, with p; € J°,

such that p(¢) = 0.

Comment. The theorem is meaningful and informative even in the case that J = R, but
we get useful additional information when J is a proper ideal. Reminder: JM is the
submodule of M generated by {ym |y € J, m € M }. It consists of all sums Zle Yimn;,
where k € N, y; € J and m; € M.

Proof. Let my, ..., m, be a finite set of generators for M and let A be a matrix expressing
¢ with respect to these generators:

qf)(mz) = Zaijmj, with aij; € J.
J

(Note that the A is not unique, nor is every n X n matrix with entries from R necessarily
associated with and endomorphism. These things are true if the m; form a basis for M,
but we have not assumed that they do, nor even that M has a basis.) Now, regard M as
an R[x]-module by letting x act as ¢, i.e., zm := ¢(m), for m € M. Let m be the column
vector whose entries are the m;. If I is the n x n identity matrix, then

(xI — A)m = 0.
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If we multiply on the left by the matrix of cofactors of xI — A, we get
[det(z] — A)]1-m =0.

Let p(z) := det(xI — A). The previous line shows that p(x)m; = p(¢)m; = 0 for all m;.
Accordingly p(¢) = 0. It is clear from the definition of the determinant that the coefficient
in p of 2* is in J" 7%, //]]/

Corollary. If « : M — M is a surjective homomorphism of R-modules, then « is an
isomorphism. (We are assuming that M is finitely-generated. This is not true otherwise.)

Proof. We will apply Cayley-Hamilton with the ring being R[t]. Regard M as an R[t]-
module by letting tm = a(m). For the ideal J we take (t) C R[t]. Since « is surjective,
IM = M. For the endomorphism ¢, we take idy;. The theorem gives us a polynomial
q(t,x) € RJt][x] such that q(t,idpr) = 0. Now,

qt,z) =2 + ()" + -+ g (t), with ¢;(t) € ().

This means that each g;(¢) has zero constant term. Thus, ¢(¢,idy;) = 0 is of the form
(1—Q(t)t) for some Q(t) € R[t] and so Q(t)t = tQ(t) = 1. Thus Q(a) = a~!. Since « has
an inverse, it is an isomorphism. /]]]/

Corollary. Any set F = {f1,..., fn} C R™ that generates R" forms a free basis.

Proof. Define 5 : R™ — R™ by ((e;) = f;, where {e1,...,e,} is the standard basis. Then
B is surjective, hence an isomorphism, so F is a free basis. /1]

Corollary. Any basis of R™ has n elements.

Proof. Suppose G = {g1,...,9m} € R" generates R". If m < n, then let g;,41 = - =
gn = 0, and let G’ = {g1,...,9n}. Then by the first part of the corollary, G’ is a free
basis—but this is absurd. Thus, any generating set (hence, any free basis) of R™ must
have at least n elements. If R™ contained a free basis with s > n elements, then R"™ = R®.
The same argument shows that n cannot be strictly less than s. Thus, any free basis of

R™ has n elements. /1]



