
M7210 Lecture 38 Monday, November 26, 2012

Sylow Theorems

Review. Suppose X is a G-set, and x ∈ X. Recall:

• Gx := { g ∈ G | gx = x } is called the isotropy group of x, or stabilizer of x.

• Gx := { gx | g ∈ G } is called the orbit of x.

Counting Formula. For any x ∈ X, |G| = |Gx| |Gx|. (Be able to prove this!)

Action of G on the set of elements of G by conjugation

Suppose G is a finite group that acts on X = G by conjugation according to the rule:

(g, x) 7→ gxg−1.

Let x ∈ G. Then Gx is the so-called centralizer of x, ZG(x) := {g ∈ G | gxg−1 = x }. The
intersection of all centralizers is called the center of G and is denoted ZG. It contains the elements
of G that commute with all x ∈ G. The orbit of x under conjugation, { gxg−1 | g ∈ G }, is called
the congugacy class of x and is denoted Cℓ(x). From the Counting Formula:

|Cℓ(x)| =
|G|

|ZG(x)|
. (2)

Any two different congugacy classes are disjoint. Therefore, the order of G is the sum of the orders
of the congugacy classes. Now |Cℓ(x)| = 1 if and only if x ∈ ZG. This gives us

Class Equation. If R contains one representative from each non-singleton conjugacy class of G,

then

|G| = |ZG| +
∑

x∈R

|Cℓx| = |ZG| +
∑

x∈R

|G|

|ZG(x)|
.

In the remainder of this lecture, we will assume that G is a finite group of order pmr, where p is

prime and (p, r) = 1.

Sylow Theorem 1. G contains a subgroup of order pm.

Remark. A subgroup of G whose order is a power of p is called a p-subgroup. A subgroup of order
pm is called a Sylow p-subgroup.

Proof . The proof is by induction on the order of G, the case |G| = 1 being obvious. Suppose the
theorem is known for all groups of order < n and |G| = n. If |ZG| is divisible by p, then by the
structure theorem for abelian groups, ZG has a subgroup H of order p. H is normal in G, and the
theorem follows by the induction hypothesis and the Isomorphism Theorem. If |ZG| is not divisible

by p then (by the Class Equation) |G|
|ZG(x)| is not divisible by p for some x ∈ G. For any such x,

ZG(x) has order pms for some s < r. The induction hypothesis tells us that ZG(x) has a subgroup
of order pm. /////

In general, we cannot expect a Sylow p-subgroup of G to be normal in G. If G has normal Sylow
p-subgroup, there are very strong consequences, due to the following:
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Lemma. Suppose that G is a group of order nr, where (n, r) = 1 and that N ⊆ G is a normal

subgroup of order n. Let H ⊆ G be a subgroup of order m, where (m, r) = 1. Then H ⊆ N .

Proof . Let π : G → G/N be the canonical homomorphism, and let k be the order of φ(H). Then
k divides m since k is the order of a homomorphic image of a group of order m. Also, k divides r,
since k is the order of a subgroup of a group of order r. Therefore k = 1. Since φ(H) has only one
element, H ⊆ N . /////

Let P be a Sylow p-subgroup of G. The lemma shows that if P is normal , then any p-subgroup of
G is contained in P . In particular, if P is normal then it is the only Sylow p-subgroup of G.

Action of G on the set of subgroups of G by conjugation

Suppose G is a finite group. Let X be the set of subgroups of G. G acts on X by conjugation
according to the rule:

(g,H) 7→ gHg−1,

where H is a subgroup of G. Note that gHg−1 has the same number of elements as H.

The stabilizer of a subgroup H is called the normalizer of H:

NG(H) := {g ∈ G | gHg−1 = H }.

This is a subgroup of G, and it is the largest subgroup of G in which H is normal (hence the name).
By the Counting Formula, the number of distinct conjugates of H is the index of NG(H) in G:

|{ gHg−1 | g ∈ G }| = |G/NG(H)|.

The Lemma above implies that if P is a Sylow p-subgroup of G (not necessarily normal in G) and
H is a p-subgroup of NG(P ), then H ⊆ P .

Sylow Theorem 2. With the same hypotheses as Sylow Theorem 1, let Π be the set of Sylow

p-subgroups of G. Then: (a) |Π| ≡ 1 mod p; (b) any two subgroups in Π are conjugate; (c) |Π|
divides r and (d) any p-subgroup of G is contained in a Sylow p-subgroup

Proof . G acts on Π by conjugation. Let P ∈ Π. Then P also acts on Π by conjugation. The
P -orbit of P itself is the singleton {P}, since pPp−1 = P for all p ∈ P . We will show that P is the
only element of Π with a singleton P -orbit. Let Q be any element of Π. If the P -orbit of Q has
only one element, then pQp−1 = Q for all p ∈ P , and this means that P ⊆ NG(Q), so P = Q by
the lemma. On the other hand, if the orbit of Q under the action of P is not a singleton, then it
has |P |/|PQ| = pℓ elements, for some ℓ ≥ 1. This proves (a). Notice that the same argument used
to prove (a) shows that any union U of G-orbits within Π has order congruent to 1 mod p, for if
P ′ ∈ U , then U is a union of P ′-orbits of which exactly one is a singleton. Now, we will show that
Π consists of a single G-orbit. If this is not the case, then Π is the disjoint union of a (non-empty)
G-orbit and another set consisting of one or more non-empty G-orbits. But this implies |Π| ≡ 2
mod p, contradicting (a). This proves (b). Since Π is an orbit of a G-action and the stabilizer
of P ∈ Π is NG(P ), we get |Π| = |G|/|NG(P )|, from which (c) follows. Finally, suppose H is a
p-subgroup of G. Let H act on Π by conjugation. Since the orbits of H have cardinality a power
of p, there must be a singleton orbit, say {P}. Then H ⊆ NG(P ), so H ⊆ P , by the lemma, and
this proves (d). /////
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