M7210 Lecture 38 Monday, November 26, 2012
Sylow Theorems

Review. Suppose X is a G-set, and x € X. Recall:
o G, :={g€G|gx=ux}is called the isotropy group of x, or stabilizer of .
o Gu:={gx|ge G} is called the orbit of x.

Counting Formula. For any x € X, |G| = |Gz||G,|. (Be able to prove this!)

Action of G on the set of elements of G by conjugation
Suppose G is a finite group that acts on X = G by conjugation according to the rule:

(9,2) — gzg~".

Let z € G. Then G, is the so-called centralizer of x, Zg(z) == {g € G | grg™* = x}. The
intersection of all centralizers is called the center of G and is denoted Zg. It contains the elements

of G that commute with all # € G. The orbit of x under conjugation, { grg=' | g € G }, is called
the congugacy class of x and is denoted (¥(x). From the Counting Formula:
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Any two different congugacy classes are disjoint. Therefore, the order of G is the sum of the orders
of the congugacy classes. Now |(/(z)| =1 if and only if z € Z;. This gives us

Class Equation. If R contains one representative from each non-singleton conjugacy class of G,
then
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In the remainder of this lecture, we will assume that G is a finite group of order p™r, where p is
prime and (p,r) = 1.

Sylow Theorem 1. G contains a subgroup of order p™.

Remark. A subgroup of G whose order is a power of p is called a p-subgroup. A subgroup of order
p™ is called a Sylow p-subgroup.

Proof. The proof is by induction on the order of G, the case |G| = 1 being obvious. Suppose the
theorem is known for all groups of order < n and |G| = n. If |Zg| is divisible by p, then by the
structure theorem for abelian groups, Zg has a subgroup H of order p. H is normal in G, and the
theorem follows by the induction hypothesis and the Isomorphism Theorem. If | Z4| is not divisible
by p then (by the Class Equation) % is not divisible by p for some x € G. For any such z,

Z¢(x) has order p™s for some s < r. The induction hypothesis tells us that Zg(x) has a subgroup
of order p™. /1]]]

In general, we cannot expect a Sylow p-subgroup of G to be normal in G. If G has normal Sylow
p-subgroup, there are very strong consequences, due to the following;:
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Lemma. Suppose that G is a group of order nr, where (n,r) = 1 and that N C G is a normal
subgroup of order n. Let H C G be a subgroup of order m, where (m,r) = 1. Then H C N.

Proof. Let m : G — G/N be the canonical homomorphism, and let k& be the order of ¢(H). Then
k divides m since k is the order of a homomorphic image of a group of order m. Also, k divides r,
since k is the order of a subgroup of a group of order r. Therefore k = 1. Since ¢(H) has only one
element, H C N. //]]/

Let P be a Sylow p-subgroup of G. The lemma shows that if P is normal, then any p-subgroup of
G is contained in P. In particular, if P is normal then it is the only Sylow p-subgroup of G.

Action of G on the set of subgroups of G by conjugation

Suppose G is a finite group. Let X be the set of subgroups of G. G acts on X by conjugation
according to the rule:
(9,H) — gHg™",

where H is a subgroup of G. Note that gHg~! has the same number of elements as H.

The stabilizer of a subgroup H is called the normalizer of H:
Ng(H):={9€G|gHg " = H}.

This is a subgroup of G, and it is the largest subgroup of G in which H is normal (hence the name).
By the Counting Formula, the number of distinct conjugates of H is the index of Ng(H) in G:

{gHg™" | g€ G} =|G/Na(H)|

The Lemma above implies that if P is a Sylow p-subgroup of G (not necessarily normal in G) and
H is a p-subgroup of Ng(P), then H C P.

Sylow Theorem 2. With the same hypotheses as Sylow Theorem 1, let II be the set of Sylow
p-subgroups of G. Then: (a) |II| = 1 mod p; (b) any two subgroups in II are conjugate; (c) ||
divides r and (d) any p-subgroup of G is contained in a Sylow p-subgroup

Proof. G acts on II by conjugation. Let P € II. Then P also acts on II by conjugation. The
P-orbit of P itself is the singleton { P}, since pPp~! = P for all p € P. We will show that P is the
only element of Il with a singleton P-orbit. Let @) be any element of II. If the P-orbit of @ has
only one element, then pQp~—! = Q for all p € P, and this means that P C Ng(Q), so P = Q by
the lemma. On the other hand, if the orbit of () under the action of P is not a singleton, then it
has |P|/|Pg| = p* elements, for some ¢ > 1. This proves (a). Notice that the same argument used
to prove (a) shows that any union U of G-orbits within IT has order congruent to 1 mod p, for if
P’ € U, then U is a union of P’-orbits of which exactly one is a singleton. Now, we will show that
IT consists of a single G-orbit. If this is not the case, then II is the disjoint union of a (non-empty)
G-orbit and another set consisting of one or more non-empty G-orbits. But this implies |II| = 2
mod p, contradicting (a). This proves (b). Since II is an orbit of a G-action and the stabilizer
of P € Il is Ng(P), we get |II| = |G|/|Na(P)|, from which (c) follows. Finally, suppose H is a
p-subgroup of GG. Let H act on II by conjugation. Since the orbits of H have cardinality a power
of p, there must be a singleton orbit, say {P}. Then H C Ng(P), so H C P, by the lemma, and

this proves (d). /111



