
Lecture 2. Algebraic constructions and categories (expanded version)

We define some categories and display some constructions that will play a role later.

M-sets

2.1. Definition. Let M be a monoid. A left M -set is a set X equipped with a function
M ×X → X; (m,x) )→ mx such that e x = x and m (mI x) = (m ∗mI)x for all m,mI ∈M
and x ∈ X. A left M-set morphism is a function f between left M -sets that satisfies
mf(x) = f(mx).

Right M -sets and M -set morphisms are defined analogously. From now on, when we
refer to an M -set without qualification (left or right), we mean a left M -set.

2.2. Examples.

a) Any monoid M is itself is a (left) M -set, where the action of m ∈ M on x ∈ M is
defined by the operation of M : mx = m ∗ x.

b) A congruence C on M is both a left and right M -set, with the actions defined as
follows:

M × C → C; (m, (mI,mII)) )→ (m ∗mI,m ∗mII)
C ×M → C; ((mI,mII),m) )→ (mI ∗ x,mII ∗m).

2.3. Lemma. An equivalence relation E on M that is both a right and left M -set under
the action described in 2.2.b) is a congruence.

Proof. Exercise. /////

2.4. Definition. A sub-M-set of an M -set X is a subset of X that is closed under the
action of M . A sub-M -set of M is called an ideal.

2.5. Discussion. We will describe the “subobject classifier,” ΩM . Let X be an M -set,
let U ⊆ X be sub-M -set and let x ∈ X. We define the ideal x\U ⊆M by

m ∈ x\U ⇔ mx ∈ U.

Note that
(m0 x)\U = m0\(x\U) for all m0 ∈M, (1)

since
m ∈ (m0 x)\U ⇔ mm0 x ∈ U ⇔ mm0 ∈ x\U ⇔ m ∈ m0\(x\U).

Let ΩM denote the set of all (left) ideals of M . The special case of (1) where X =M and
U is an ideal of M shows that ΩM is an M -set, with the action defined by (m, I) )→ m\I.
The largest ideal of M–namely, M itself–will be denoted 1. The smallest ideal–namely,
the empty set–will be denoted 0.

Let X be an M -set. We will show that there is a bijection between the set PM (X) of
sub-M -sets of X and the set homM (X,ΩM ) of M -set morphisms from M to ΩM . Let U
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be a sub-M -set of X. Then the map χU : X → ΩM defined by χU (x) := x\U is an M -set
morphism by (1), and

χ−1U (1) = U. (2)

Conversely, if φ : X → ΩM is any M -set morphism, then

m ∈ x\φ−1(1)⇐⇒ mx ∈ φ−1(1)
⇐⇒ φ(mx) = 1

⇐⇒ m\φ(x) = 1
⇐⇒ 0 ∈ m\φ(x)
⇐⇒ m ∈ φ(x)

This shows that
φ = χφ−1(1). (3)

Now, (2) and (3) show that U )→ χU is a bijection with inverse φ )→ φ−1(1). /////

2.6. Definition. The product of an I-indexed family of M-sets {Xi | i ∈ I } is the set-
theoretic product, with the component-wise action: (my)i := m (yi), for y ∈ i∈I Xi. A
left M-set congruence on X is an equivalence relation on X that is also sub-left-M -set of
X ×X. The set of equivalence classes of a congruence C on S is naturally an M -set. It is
denoted X/C and is called the quotient of X by C.

2.7. Facts. We describe free M-sets. Let E be a set. Then E is a left M -set under the
trivial action (m, y) )→ y, y ∈ E. Suppose that X is a left M -set and g : E → X is any
function. Then (prove this!) there is a unique left M -set morphism g : M × E → X such
that g(m, y) = mg(y). Because of this universal mapping property, M × E is said to be
the free left M-set on E.

2.8. Fact. Suppose that φ : M → Q is a morphism of monoids. This induces a functor
Mφ from the category of left Q-sets to the category of leftM -sets. If Y is a Q-set,Mφ(Y )
is simply Y endowed with the M -action (m, y) )→ φ(m)y. To avoid confusion, we will use
the notation m ·φ y to denote this action. Thus, for a Q-set Y and m ∈M ,

m ·φ y := φ(m) y.

We can define a functor Qφ from left M -sets to left Q-sets as follows. Let X be an M -set.
The underlying set of X is |X| and the free Q-set over |X| is Q× |X|. We set

Qφ(X) := (Q× |X|)/E(φ, X),

where E(φ, X) is the smallest Q-set congruence on Q× |X| such that

(φ(m), x) ∼E (e,mI x) whenever φ(m) = φ(mI).
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2.9. Theorem. Qφ is a functor and is left adjoint to Mφ.

Proof. To see this is a functor, suppose f : X → Y is an M -set morphism. Then there is
a unique Q-set morphism

f0 : Q× |X|→ Qφ(Y ) ; f0(q, x) = (q, f(x)).

Observe that if φ(m) = φ(mI), then

f0(φ(m), x) = (φ(m), f(x)) = (e,mI f(x)) = (e, f(mI x)) = f0(e,mI x).

This shows that E(φ,X) is contained in the kernel of f0, and hence f0 induces a Q-set
morphism

Qφ(f) : Qφ(X)→ Qφ(Y ).

Now we will show that Qφ is left adjoint to Mφ, using the criterion of [S. MacLane,
Categories for the Working Mathematician, Springer 1971. Chapter IV, Theorem 2 part(i),
page 81]. Let X be an M -set. Define the morphism ηX : X → MφQφ(X) by ηX(x) =

(e, x). This is an M -set morphism because

ηX(mx) = (e,mx) = (φ(m) e, x) = m (e, x) = m ηX(x).

Let Y be any Q-set and let f : X →Mφ(Y ) be any M -set morphism. We will show that
there is a unique Q-set morphism f : Qφ(X)→ Y such that f =Mφ(f) ◦ ηX . There is a
Q-set morphism f0 : Q×|X|→ Y that is uniquely determined by setting f0 ((e, x)) = f(x).
Now, E(φ, X) ⊆ ker f0, because if φ(m) = φ(mI), then

f0 ((φ(m), x)) = φ(m) f(x) = φ(mI) f(x) = mI ·φ f(x) = f(mIx) = f0 ((e,mIx)) .
Hence there is a unique Q-set morphism f such that f0 = f ◦ p, where p is the canonical
morphism p : Q× |X|→ Qφ(x), and from the definition of f0, it is clear that f = f ◦ ηX .
/////

M-modules

Definition. Let M be a monoid. A left M-module is an abelian group A equipped
with a function M × A → A; (m,a) )→ ma such that ea = a and m(mIa) = (m ∗ mI)a
and m(a + b) = ma + mb for all m,mI ∈ M and a, b ∈ A. Right M -module is defined
analogously.

From now on, unless otherwise stated, “M -module” means left M -module. A function
φ : A → AI between M -modules is a morphism of M-modules if φ(m1a1 + m2a2) =
m1φ(a1)+m2φ(a2) for all m1,m2 ∈M and a1, a2 ∈ A. A sub-M-module of an M -module
A is a subgroup with the property that mb ∈ B whenever m ∈M and b ∈ B.

Exercise. Suppose that B ⊆ A is a sub-M -module, and a ∈ A. Show that the quotient
group A/B is naturally an M -module. State and prove the First Isomorphism Theorem
for M -modules.
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Definition. Let X be a left M -set and let A an abelian group. We define the left M -
module A(X) to be the abelian group of all finitely supported functions a : X → A;x )→ ax
with M action defined as follows:

(ma)x =
m∗y=x

ay.

If a ∈ A(X), we can represent a as a formal sum

a =
x∈X

axx.

Here, of course, only finitely many of the ax are non-zero. In this notation, the action of
M can be expressed in the (possibly more transparent) form:

m
x∈X

axx =
x∈X

axmx.

Exercise. Let A be an abelian group. Define 6 : A→ A(M) by 6(a)e := a and 6(a)m := 0
if m W= e (e being the neutral element of M). Show that A(M) has the following universal
mapping property: if φ : A→ B is any group homomorphism from A to an M -module B,
then there is a unique M -module morphism φ : A(M) → B such that φ = φ 6. Show that

Z(I) (M)
is the free M -module on the set I.

M-Objects in general

The two constructions just described are special cases of a more general construction. Let
C be a category. AnM -object in C is an object C of C together with a monoid morphism
fromM to the monoid hom(C,C) of C-morphisms from C to C. This is the same thing as
a functor from M to C. A morphism of M -objects is a C morphism between M -objects
that commutes with the given actions of M on the domain and codomain. This is the
same thing as a natural transform between functors.

Monoid Rings

Definition. Let R be a ring. The monoid ring R[M ] is the M -module R(M) equipped
with the multiplication

(rrI)m :=
k∗f=m

rkr
I
f.

Exercises.
i) Show that this multiplication can also be expressed as follows:
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m∈M
rmm

n∈M
snn =

m∈M n∈M
rmsn(m ∗ n).

ii) Prove that R[M ] is a ring.
iii) Is R[M ] and M -object in the category of rings? Why or why not?
iv) Let A be a left M -module. Show that A is a left Z[M ]-module if we define:

m∈M
nmm a =

m∈M
nm(ma).
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