Lecture 2. Algebraic constructions and categories (expanded version)

We define some categories and display some constructions that will play a role later.

M-sets

2.1. Definition. Let M be a monoid. A *left* M-set is a set X equipped with a function $M \times X \to X$; $(m, x) \mapsto mx$ such that ex = x and m(m'x) = (m*m')x for all $m, m' \in M$ and $x \in X$. A *left* M-set morphism is a function f between left M-sets that satisfies mf(x) = f(mx).

Right M-sets and M-set morphisms are defined analogously. From now on, when we refer to an M-set without qualification (left or right), we mean a left M-set.

2.2. Examples.

- a) Any monoid M is itself is a (left) M-set, where the action of $m \in M$ on $x \in M$ is defined by the operation of M: m x = m * x.
- b) A congruence C on M is both a left and right M-set, with the actions defined as follows:

$$M \times C \to C; (m, (m', m'')) \mapsto (m * m', m * m'')$$
$$C \times M \to C; ((m', m''), m) \mapsto (m' * x, m'' * m).$$

2.3. Lemma. An equivalence relation E on M that is both a right and left M-set under the action described in 2.2.b) is a congruence.

Proof. Exercise.

2.4. Definition. A sub-*M*-set of an *M*-set X is a subset of X that is closed under the action of M. A sub-*M*-set of M is called an *ideal*.

2.5. Discussion. We will describe the "subobject classifier," Ω_M . Let X be an M-set, let $U \subseteq X$ be sub-M-set and let $x \in X$. We define the ideal $x \setminus U \subseteq M$ by

$$m \in x \backslash U \iff m x \in U.$$

Note that

$$(m_0 x) \backslash U = m_0 \backslash (x \backslash U) \quad \text{for all } m_0 \in M, \tag{1}$$

/////

since

$$m \in (m_0 x) \backslash U \iff m m_0 x \in U \iff m m_0 \in x \backslash U \iff m \in m_0 \backslash (x \backslash U).$$

Let Ω_M denote the set of all (left) ideals of M. The special case of (1) where X = M and U is an ideal of M shows that Ω_M is an M-set, with the action defined by $(m, I) \mapsto m \setminus I$. The largest ideal of M—namely, M itself—will be denoted 1. The smallest ideal—namely, the empty set—will be denoted 0.

Let X be an M-set. We will show that there is a bijection between the set $\mathcal{P}_M(X)$ of sub-M-sets of X and the set $\hom_M(X, \Omega_M)$ of M-set morphisms from M to Ω_M . Let U be a sub-*M*-set of *X*. Then the map $\chi_U : X \to \Omega_M$ defined by $\chi_U(x) := x \setminus U$ is an *M*-set morphism by (1), and

$$\chi_U^{-1}(1) = U. (2)$$

Conversely, if $\phi: X \to \Omega_M$ is any *M*-set morphism, then

$$m \in x \setminus \phi^{-1}(1) \iff m \, x \in \phi^{-1}(1)$$
$$\iff \phi(m \, x) = 1$$
$$\iff m \setminus \phi(x) = 1$$
$$\iff 0 \in m \setminus \phi(x)$$
$$\iff m \in \phi(x)$$

This shows that

$$\phi = \chi_{\phi^{-1}(1)}.\tag{3}$$

Now, (2) and (3) show that $U \mapsto \chi_U$ is a bijection with inverse $\phi \mapsto \phi^{-1}(1)$. /////

2.6. Definition. The product of an *I*-indexed family of *M*-sets $\{X_i \mid i \in I\}$ is the settheoretic product, with the component-wise action: $(my)_i := m(y_i)$, for $y \in \prod_{i \in I} X_i$. A *left M-set congruence on X* is an equivalence relation on X that is also sub-left-*M*-set of $X \times X$. The set of equivalence classes of a congruence C on S is naturally an *M*-set. It is denoted X/C and is called the *quotient of X by C*.

2.7. Facts. We describe *free* M-sets. Let E be a set. Then E is a left M-set under the trivial action $(m, y) \mapsto y, y \in E$. Suppose that X is a left M-set and $g : E \to X$ is any function. Then (prove this!) there is a unique left M-set morphism $\overline{g} : M \times E \to X$ such that $\overline{g}(m, y) = m g(y)$. Because of this universal mapping property, $M \times E$ is said to be the *free left* M-set on E.

2.8. Fact. Suppose that $\phi: M \to Q$ is a morphism of monoids. This induces a functor \mathbf{M}_{ϕ} from the category of left *Q*-sets to the category of left *M*-sets. If *Y* is a *Q*-set, $\mathbf{M}_{\phi}(Y)$ is simply *Y* endowed with the *M*-action $(m, y) \mapsto \phi(m)y$. To avoid confusion, we will use the notation $m \cdot_{\phi} y$ to denote this action. Thus, for a *Q*-set *Y* and $m \in M$,

$$m \cdot_{\phi} y := \phi(m) y.$$

We can define a functor \mathbf{Q}_{ϕ} from left *M*-sets to left *Q*-sets as follows. Let *X* be an *M*-set. The underlying set of *X* is |X| and the free *Q*-set over |X| is $Q \times |X|$. We set

$$\mathbf{Q}_{\phi}(X) := (Q \times |X|) / E(\phi, X),$$

where $E(\phi, X)$ is the smallest Q-set congruence on $Q \times |X|$ such that

$$(\phi(m), x) \sim_E (e, m'x)$$
 whenever $\phi(m) = \phi(m')$.

2.9. Theorem. \mathbf{Q}_{ϕ} is a functor and is left adjoint to \mathbf{M}_{ϕ} .

Proof. To see this is a functor, suppose $f: X \to Y$ is an *M*-set morphism. Then there is a unique *Q*-set morphism

$$f_0: Q \times |X| \to \mathbf{Q}_{\phi}(Y); \ f_0(q, x) = \overline{(q, f(x))}.$$

Observe that if $\phi(m) = \phi(m')$, then

$$f_0(\phi(m), x) = \overline{(\phi(m), f(x))} = \overline{(e, m'f(x))} = \overline{(e, f(m'x))} = f_0(e, m'x).$$

This shows that $E(\phi, X)$ is contained in the kernel of f_0 , and hence f_0 induces a Q-set morphism

$$\mathbf{Q}_{\phi}(f) : \mathbf{Q}_{\phi}(X) \to \mathbf{Q}_{\phi}(Y).$$

Now we will show that \mathbf{Q}_{ϕ} is left adjoint to \mathbf{M}_{ϕ} , using the criterion of [S. MacLane, *Categories for the Working Mathematician*, Springer 1971. Chapter IV, Theorem 2 part(i), page 81]. Let X be an M-set. Define the morphism $\eta_X : X \to \mathbf{M}_{\phi} \mathbf{Q}_{\phi}(X)$ by $\eta_X(x) = (e, x)$. This is an M-set morphism because

$$\eta_X(m\,x) = \overline{(e,m\,x)} = \overline{(\phi(m)\,e,x)} = m\,\overline{(e,x)} = m\,\eta_X(x).$$

Let Y be any Q-set and let $f: X \to \mathbf{M}_{\phi}(Y)$ be any M-set morphism. We will show that there is a unique Q-set morphism $\overline{f}: \mathbf{Q}_{\phi}(X) \to Y$ such that $f = \mathbf{M}_{\phi}(\overline{f}) \circ \eta_X$. There is a Q-set morphism $f_0: Q \times |X| \to Y$ that is uniquely determined by setting $f_0((e, x)) = f(x)$. Now, $E(\phi, X) \subseteq \ker f_0$, because if $\phi(m) = \phi(m')$, then

$$f_0((\phi(m), x)) = \phi(m) f(x) = \phi(m') f(x) = m' \cdot_{\phi} f(x) = f(m'x) = f_0((e, m'x)).$$

Hence there is a unique Q-set morphism \overline{f} such that $f_0 = \overline{f} \circ p$, where p is the canonical morphism $p: Q \times |X| \to \mathbf{Q}_{\phi}(x)$, and from the definition of f_0 , it is clear that $f = \overline{f} \circ \eta_X$.

M-modules

Definition. Let M be a monoid. A left M-module is an abelian group A equipped with a function $M \times A \to A$; $(m, a) \mapsto ma$ such that ea = a and m(m'a) = (m * m')a and m(a + b) = ma + mb for all $m, m' \in M$ and $a, b \in A$. Right M-module is defined analogously.

From now on, unless otherwise stated, "*M*-module" means left *M*-module. A function $\phi : A \to A'$ between *M*-modules is a morphism of *M*-modules if $\phi(m_1a_1 + m_2a_2) = m_1\phi(a_1) + m_2\phi(a_2)$ for all $m_1, m_2 \in M$ and $a_1, a_2 \in A$. A sub-*M*-module of an *M*-module *A* is a subgroup with the property that $mb \in B$ whenever $m \in M$ and $b \in B$.

Exercise. Suppose that $B \subseteq A$ is a sub-*M*-module, and $a \in A$. Show that the quotient group A/B is naturally an *M*-module. State and prove the First Isomorphism Theorem for *M*-modules.

Definition. Let X be a left M-set and let A an abelian group. We define the left M-module $A^{(X)}$ to be the abelian group of all finitely supported functions $\overline{a}: X \to A; x \mapsto \overline{a}_x$ with M action defined as follows:

$$(m\overline{a})_x = \sum_{m*y=x} \overline{a}_y.$$

If $\overline{a} \in A^{(X)}$, we can represent \overline{a} as a formal sum

$$\overline{a} = \sum_{x \in X} \overline{a}_x x.$$

Here, of course, only finitely many of the \overline{a}_x are non-zero. In this notation, the action of M can be expressed in the (possibly more transparent) form:

$$m\sum_{x\in X}\overline{a}_x x = \sum_{x\in X}\overline{a}_x m x.$$

Exercise. Let A be an abelian group. Define $\epsilon : A \to A^{(M)}$ by $\epsilon(a)_e := a$ and $\epsilon(a)_m := 0$ if $m \neq e$ (e being the neutral element of M). Show that $A^{(M)}$ has the following universal mapping property: if $\phi : A \to B$ is any group homomorphism from A to an M-module B, then there is a unique M-module morphism $\overline{\phi} : A^{(M)} \to B$ such that $\phi = \overline{\phi} \epsilon$. Show that $(\mathbb{Z}^{(I)})^{(M)}$ is the free M-module on the set I.

M-Objects in general

The two constructions just described are special cases of a more general construction. Let \mathbf{C} be a category. An *M*-object in \mathbf{C} is an object *C* of \mathbf{C} together with a monoid morphism from *M* to the monoid hom(C, C) of \mathbf{C} -morphisms from *C* to *C*. This is the same thing as a functor from *M* to \mathbf{C} . A morphism of *M*-objects is a \mathbf{C} morphism between *M*-objects that commutes with the given actions of *M* on the domain and codomain. This is the same thing as a natural transform between functors.

Monoid Rings

Definition. Let R be a ring. The monoid ring R[M] is the M-module $R^{(M)}$ equipped with the multiplication

$$(rr')_m := \sum_{k*\ell=m} r_k r'_\ell.$$

Exercises.

i) Show that this multiplication can also be expressed as follows:

$$\left(\sum_{m \in M} r_m m\right) \left(\sum_{n \in M} s_n n\right) = \sum_{m \in M} \sum_{n \in M} r_m s_n (m * n).$$

- ii) Prove that R[M] is a ring.
- iii) Is R[M] and M-object in the category of rings? Why or why not?
- iv) Let A be a left M-module. Show that A is a left $\mathbb{Z}[M]\text{-module}$ if we define:

$$\left(\sum_{m\in M} n_m m\right)a = \sum_{m\in M} n_m(ma).$$