Lecture 2. Algebraic constructions and categories (expanded version)
We define some categories and display some constructions that will play a role later.
M -sets

2.1. Definition. Let M be a monoid. A left M-set is a set X equipped with a function
M x X — X;(m,x) — max such that ex = x and m (m' z) = (m*m/) z for all m,m’ € M
and x € X. A left M-set morphism is a function f between left M-sets that satisfies
m f(z) = f(mz).

Right M-sets and M-set morphisms are defined analogously. From now on, when we
refer to an M-set without qualification (left or right), we mean a left M-set.

2.2. Examples.

a) Any monoid M is itself is a (left) M-set, where the action of m € M on x € M is
defined by the operation of M: mx = m * x.
b) A congruence C' on M is both a left and right M-set, with the actions defined as
follows:
M x C — C;(m,(m',m")) = (m*m',mx*m")

CxM—C;((m',m"),m)— (mxz,m" xm).

2.3. Lemma. An equivalence relation £ on M that is both a right and left M-set under
the action described in 2.2.b) is a congruence.

Proof. Exercise. /111]

2.4. Definition. A sub-M-set of an M-set X is a subset of X that is closed under the
action of M. A sub-M-set of M is called an ideal.

2.5. Discussion. We will describe the “subobject classifier,” 23,. Let X be an M-set,
let U C X be sub-M-set and let x € X. We define the ideal 2\U C M by

mex\U & mz e U.

Note that
(mo z)\U = mo\(z\U) for all mg € M, (1)

since
me€ (mox)\U ©mmoz €U & mmy €x\U < m e mp\(z\U).

Let Qs denote the set of all (left) ideals of M. The special case of (1) where X = M and
U is an ideal of M shows that Qs is an M-set, with the action defined by (m, I) — m\I.
The largest ideal of M—mnamely, M itself—will be denoted 1. The smallest ideal—namely,
the empty set—will be denoted 0.

Let X be an M-set. We will show that there is a bijection between the set Py (X) of
sub-M-sets of X and the set homp; (X, Q) of M-set morphisms from M to Q7. Let U
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be a sub-M-set of X. Then the map xy : X — Qs defined by xy(z) := 2\U is an M-set
morphism by (1), and

Xy (1) =U. (2)

Conversely, if ¢ : X — Qs is any M-set morphism, then

m e x\¢ (1) <= mz € ¢ (1)
— ¢p(mz) =1
— m\¢(z) =1
< 0 € m\¢(x)
<= m € ¢(x)

This shows that
b= Xp-1(1)- (3)
Now, (2) and (3) show that U +— xy is a bijection with inverse ¢ — ¢~1(1). /]]/]/

2.6. Definition. The product of an I-indexed family of M-sets { X; | i € I} is the set-
theoretic product, with the component-wise action: (my); := m (y;), for y € [[;c; Xs. A
left M -set congruence on X is an equivalence relation on X that is also sub-left-M-set of

X x X. The set of equivalence classes of a congruence C on S is naturally an M-set. It is
denoted X/C and is called the quotient of X by C.

2.7. Facts. We describe free M-sets. Let E be a set. Then F is a left M-set under the
trivial action (m,y) — y, y € E. Suppose that X is a left M-set and g : E — X is any
function. Then (prove this!) there is a unique left M-set morphism g: M x E — X such
that g(m,y) = mg(y). Because of this universal mapping property, M x E is said to be
the free left M -set on E.

2.8. Fact. Suppose that ¢ : M — @ is a morphism of monoids. This induces a functor
M, from the category of left Q-sets to the category of left M-sets. If Y is a Q-set, My(Y)

is simply Y endowed with the M-action (m,y) — ¢(m)y. To avoid confusion, we will use
the notation m -4 y to denote this action. Thus, for a Q-set Y and m € M,

m-gy = ¢(m)y.

We can define a functor Qg from left M-sets to left Q-sets as follows. Let X be an M-set.
The underlying set of X is |X| and the free Q-set over | X| is @ x | X|. We set

Q4(X) := (Q x |X|)/E(¢, X),
where E(¢, X) is the smallest Q-set congruence on @ x |X| such that
(¢(m),z) ~g (e,m’' z) whenever ¢p(m) = ¢(m’).
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2.9. Theorem. Q4 is a functor and is left adjoint to M.

Proof. To see this is a functor, suppose f : X — Y is an M-set morphism. Then there is
a unique ()-set morphism

fo: @x X[ = Qu(Y); folg,z) = (g, f(2))-
Observe that if ¢(m) = ¢(m'), then
fo(¢(m),z) = (¢(m), f(z)) = (e,m’ f(z)) = (e, f(M x)) = fo(e,m’ x).

This shows that F(¢,X) is contained in the kernel of fy, and hence f; induces a Q-set
morphism

Qu(f) 1 Qp(X) — Qu(Y).

Now we will show that Qg is left adjoint to My, using the criterion of [S. MacLane,
Categories for the Working Mathematician, Springer 1971. Chapter IV, Theorem 2 part(i),
page 81]. Let X be an M-set. Define the morphism nx : X — MyQ4(X) by nx(z) =

(e,z). This is an M-set morphism because

nx(mz) = (e,mz) = (¢(m) e,x) = m(e,x) = mix ().

Let Y be any Q-set and let f : X — My(Y') be any M-set morphism. We will show that
there is a unique @-set morphism f : Q4(X) — Y such that f = My(f) o nx. There is a
Q@-set morphism fp : @ % |X| — Y that is uniquely determined by setting fo ((e,z)) = f(z).

Now, E(¢, X) C ker fy, because if ¢(m) = ¢(m’), then

fo((¢(m), ) = ¢(m) f(x) = p(m) f(z) =m' -4 f(x) = f(m'z) = fo ((e,m'z)).

Hence there is a unique @Q-set morphism f such that fy = f o p, where p is the canonical
morphism p: Q x |X| = Qu(z), and from the definition of fo, it is clear that f = f o nx.

/1111
M -modules

Definition. Let M be a monoid. A left M-module is an abelian group A equipped
with a function M x A — A;(m,a) — ma such that ea = a and m(m’a) = (m *m/)a
and m(a 4+ b) = ma + mb for all m,m’ € M and a,b € A. Right M-module is defined
analogously.

From now on, unless otherwise stated, “M-module” means left M-module. A function
¢ : A — A between M-modules is a morphism of M-modules if ¢(mia; + moas) =
my¢(ar) + mag(az) for all my,me € M and aq,as € A. A sub-M-module of an M-module
A is a subgroup with the property that mb € B whenever m € M and b € B.

Exercise. Suppose that B C A is a sub-M-module, and a € A. Show that the quotient
group A/B is naturally an M-module. State and prove the First Isomorphism Theorem
for M-modules.



Definition. Let X be a left M-set and let A an abelian group. We define the left M-
module A(X) to be the abelian group of all finitely supported functions @ : X — A;z — @,
with M action defined as follows:

(M) = Y @y

m*xy=x

If @ € A, we can represent @ as a formal sum

a= E A,

reX

Here, of course, only finitely many of the @, are non-zero. In this notation, the action of
M can be expressed in the (possibly more transparent) form:

mE AT = E a;me.

reX reX

Exercise. Let A be an abelian group. Define ¢ : A — AM) by €(a), := a and €(a),, := 0
if m # e (e being the neutral element of M). Show that A has the following universal
mapping property: if ¢ : A — B is any group homomorphism from A to an M-module B,
then there is a unique M-module morphism ¢ : AXM) — B such that ¢ = ¢ e. Show that

(Z(I))(M) is the free M-module on the set I.
M -Objects in general

The two constructions just described are special cases of a more general construction. Let
C be a category. An M-object in C is an object C' of C together with a monoid morphism
from M to the monoid hom(C, C) of C-morphisms from C to C. This is the same thing as
a functor from M to C. A morphism of M-objects is a C morphism between M-objects
that commutes with the given actions of M on the domain and codomain. This is the
same thing as a natural transform between functors.

Monoid Rings

Definition. Let R be a ring. The monoid ring R[M] is the M-module R™) equipped
with the multiplication
(rr" ) 1= Z rir’p.

kxl=m

Exercises.
i) Show that this multiplication can also be expressed as follows:
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(Z rmm) (Z ) S S rsalmen)

meM neM meM neM

i7) Prove that R[M] is a ring.
iii) Is R[M] and M-object in the category of rings? Why or why not?
iv) Let A be a left M-module. Show that A is a left Z[M]-module if we define:

(Z nmm> a= Y nm(ma).

meM meM



