Lecture 3. Commutative monoids

Definition. A monoid M is commutative if x * y = y * x for all $x, y \in M$.

From now on, monoids will be assumed commutative unless we explicitly say otherwise. We will use + to denote the monoid operation and 0 to denote the neutral element. The *n*-fold sum $x + \cdots + x$ is denoted nx.

Definition.

- 1) M is cancellative if x + y = x + z implies y = z for all $x, y, x \in M$.
- 2) *M* is torsionfree if: for all n = 1, 2, 3, ... and all $x, y \in M$, nx = ny implies x = y. (Here, nx is an abbreviation for the *n*-fold sum: $x + x + \cdots + x$.)

The free group over a commutative monoid

- **2.1. Exercise.** Let $\gamma_M : M \to G(M)$ be the free group over the commutative monoid M.
 - i) Let ~ be the relation on $M \times M$ defined by

$$(a,b) \sim (c,d) \Leftrightarrow \text{for some } m \in M, \ a+d+m=b+c+m.$$

Show that \sim is an equivalence relation and that it is closed under the action of $M \times M$:

$$(\ell, m) ((a, b), (c, d)) := ((\ell + a, m + b), (\ell + c, m + d)) .$$

Conclude that \sim is a congruence on $M \times M$.

ii) Show that $(M \times M) / \sim$ is a group and that the morphism

$$\beta: M \to (M \times M) / \sim; a \mapsto [a, e]$$

has the universal mapping property of γ_M . (Hence $G(M) \cong (M \times M) / \sim$.)

ii) γ_M is injective if and only if M is cancellative. If M is cancellative and torsionfree, then G(M) is torsionfree. However, there is a (non-cancellative) torsionfree M such that G(M) is torsionfree.

Free commutative monoids.

 \mathbb{N} denotes the monoid of natural numbers: $\mathbb{N} = \{0, 1, 2, ...\}$. Let I be a set, \mathbb{N}^{I} denotes the product of I copies of \mathbb{N} , *i.e.*, the monoid of functions from I to \mathbb{N} . If $I = \{1, 2, ..., n\}$, we write \mathbb{N}^{n} . If $\alpha \in \mathbb{N}^{I}$ and $i \in I$ then $\alpha_{i} \in \mathbb{N}$ denotes the value of α at i.

If $i \in I$, then δ^i denotes the element of \mathbb{N}^I that has value 1 at *i* and 0 elsewhere. Thus:

$$\delta_j^i = \begin{cases} 1, & \text{if } i = j; \\ 0, & \text{otherwise} \end{cases}$$

 $\mathbb{N}^{(I)}$ denotes the submonoid of \mathbb{N}^{I} consisting of those functions that have finite support. Note that $\mathbb{N}^{(I)} = \langle \delta^{i} | i \in I \rangle$. **2.2. Fact.** Let M be any commutative monoid and let $\phi : I \to M$ be any function. Then there is a unique monoid homomorphism $\overline{\phi} : \mathbb{N}^{(I)} \to M$ such that $\overline{\phi}(\delta^i) = \phi(i)$. (Thus, any finitely generated (commutative) monoid is isomorphic to \mathbb{N}^n/C for some integer n and congruence C.)

Dickson's Lemma.

If $\alpha, \beta \in \mathbb{N}^{I}$, we write $\alpha \leq \beta$ if for each $i \in I$, $\alpha_{i} \leq \beta_{i}$. Thus,

$$\alpha \leq \beta \iff \exists \gamma \in \mathbb{N}^{I} \alpha + \gamma = \beta.$$

Note that any two elements α, β have a supremum $\alpha \lor \beta$ (the coordinatewise maximum of α and β) and infimum $\alpha \land \beta$ (the coordinate-wise minimum). Also, note that $\alpha \lor \beta$ and $\alpha \land \beta$ are in $\mathbb{N}^{(I)}$ if α and β are.

2.3. Lemma. Every sequence $\alpha^1, \alpha^2, \cdots$ in \mathbb{N}^n contains a weakly increasing subsequence $\alpha^{\sigma(1)} \leq \alpha^{\sigma(2)} \leq \cdots$. Thus, the set of \leq -minimal elements in any subset of \mathbb{N}^n is finite.

Proof. Let $\alpha^i = (\alpha_1^i, \ldots, \alpha_n^i)$, $i = 1, 2, \ldots$, be a sequence of elements of \mathbb{N}^n . This contains a subsequence $\alpha^{\sigma(i)}$ in which the last coordinate $\alpha_n^{\sigma(i)}$ is weakly increasing. This, in turn, contains a subsequence in which the (n-1)th coordinate is weakly increasing. After *n* steps, we have a subsequence satisfying the required condition. The last assertion follows because there are no order relations among the minimal elements of a set. If there were infinitely many, one could form a sequence from them that had no weakly increasing subsequence. /////

Congruences on commutative monoids: generators

2.4. Fact. Let M be a monoid and let B be a subset of $M \times M$. Let X(B) be the set of all pairs (x, x') such that either x = x' or there is a finite sequence:

$$x = y_1 + x_1 \sim y_1 + x_1' = y_2 + x_2 \sim y_2 + x_2' = \dots = y_k + x_k \sim y_k + x_k' = x'$$

where for each i = 1, ..., k, $y_i \in M$ and either $(x_i, x'_i) \in B$ or $(x'_i, x_i) \in B$. Then $X(B) = \langle \langle B \rangle \rangle$, the congruence generated by B

Proof. In the statement of the fact, we used the symbol \sim simply as a marker between elements in the sequence. But note that wherever it occurs, the elements on either side are equivalent under any congruence containing B. Hence, $\langle \langle B \rangle \rangle$ contains X(B). Now, it is easy to see that $B \subseteq X(B)$ and that X(B) is an equivalence relation that is closed under the M-action $(x, x') \mapsto (m + x, m + x')$, so X(B) is a congruence. Hence, X(B) contains $\langle \langle B \rangle \rangle$.

Ideals, and the congruences associated with them.

Definition. A subset $I \subseteq M$ of a monoid M is an *ideal* if $x + y \in I$ whenever $x \in I$ and $y \in M$.

Here are a few basic facts about ideals:

- i) An intersection of ideals is an ideal. Thus, if $X \subseteq M$ there is a smallest ideal containing X. It is called the *ideal generated by* X and it is equal to $X + M := \{x + m \mid x \in X, m \in M\}$.
- *ii*) If $\phi : L \to M$ is a monoid morphism and $I \subseteq M$ is an ideal, then $\phi^{-1}(I)$ is an ideal in L. If $\phi : L \to M$ is surjective and $I \subseteq L$ is and ideal, then $\phi(I) \subseteq M$ is an ideal.
- *iii*) A subset $I \subseteq \mathbb{N}^{(I)}$ is an ideal iff $z \ge x \in I \implies z \in I$. Hence, the ideal generated by $X \subseteq M$ is $\{y \in M \mid y \ge x, \text{ for some } x \in X\}$.
- iv) By Dickson's Lemma, every ideal in \mathbb{N}^n is finitely generated. Combined with ii), this shows that every ideal of a finitely generated monoid is finitely generated.

Suppose $I \subseteq M$ is an ideal. The equivalence relation on M that has I as its only nonsingleton class is called the *Rees congruence of* I. The corresponding quotient monoid has an element ∞ with the property that $\infty + x = \infty$ for all $x \in M$. An element with this property is said to be *absorbing*.

The Rees congruences are the simplest of all congruences. Later, we will look at other other kinds.