
Lecture 3. Commutative monoids

Definition. A monoid M is commutative if x ∗ y = y ∗ x for all x, y ∈M .
From now on, monoids will be assumed commutative unless we explicitly say otherwise.
We will use + to denote the monoid operation and 0 to denote the neutral element. The
n-fold sum x+ · · ·+ x is denoted nx.
Definition.
1) M is cancellative if x+ y = x+ z implies y = z for all x, y, x ∈M .
2) M is torsionfree if: for all n = 1, 2, 3, . . . and all x, y ∈ M , nx = ny implies x = y.
(Here, nx is an abbreviation for the n-fold sum: x+ x+ · · ·+ x.)

The free group over a commutative monoid

2.1. Exercise. Let γM :M → G(M) be the free group over the commutative monoid M .

i) Let ∼ be the relation on M ×M defined by

(a, b) ∼ (c, d) ⇔ for some m ∈M , a+ d+m = b+ c+m.

Show that ∼ is an equivalence relation and that it is closed under the action ofM×M :

(f,m) ((a, b), (c, d)) := ((f+ a,m+ b), (f+ c,m+ d)) .

Conclude that ∼ is a congruence on M ×M .
ii) Show that (M ×M)/ ∼ is a group and that the morphism

β :M → (M ×M)/ ∼; a )→ [a, e]

has the universal mapping property of γM . (Hence G(M) ∼= (M ×M)/ ∼.)
ii) γM is injective if and only if M is cancellative. If M is cancellative and torsionfree,

then G(M) is torsionfree. However, there is a (non-cancellative) torsionfree M such
that G(M) is torsionfree.

Free commutative monoids.

N denotes the monoid of natural numbers: N = { 0, 1, 2, . . . }. Let I be a set,. NI denotes
the product of I copies of N, i.e., the monoid of functions from I to N. If I = { 1, 2, . . . , n},
we write Nn. If α ∈ NI and i ∈ I then αi ∈ N denotes the value of α at i.
If i ∈ I, then δi denotes the element of NI that has value 1 at i and 0 elsewhere. Thus:

δij =
1, if i = j;
0, otherwise.

N(I) denotes the submonoid of NI consisting of those functions that have finite support.
Note that N(I) = � δi | i ∈ I X.
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2.2. Fact. Let M be any commutative monoid and let φ : I →M be any function. Then
there is a unique monoid homomorphism φ : N(I) →M such that φ(δi) = φ(i). (Thus, any
finitely generated (commutative) monoid is isomorphic to Nn/C for some integer n and
congruence C.)

Dickson’s Lemma.

If α,β ∈ NI , we write α ≤ β if for each i ∈ I, αi ≤ βi. Thus,

α ≤ β ⇔ ∃γ ∈ NIα+ γ = β.

Note that any two elements α,β have a supremum α∨ β (the coordinatewise maximum of
α and β) and infimum α ∧ β (the coordinate-wise minimum). Also, note that α ∨ β and
α ∧ β are in N(I) if α and β are.

2.3. Lemma. Every sequence α1,α2, · · · in Nn contains a weakly increasing subsequence
ασ(1) ≤ ασ(2) ≤ · · ·. Thus, the set of ≤-minimal elements in any subset of Nn is finite.

Proof. Let αi = (αi1, . . . ,α
i
n), i = 1, 2, . . ., be a sequence of elements of Nn. This contains

a subsequence ασ(i) in which the last coordinate α
σ(i)
n is weakly increasing. This, in turn,

contains a subsequence in which the (n−1)th coordinate is weakly increasing. After n steps,
we have a subsequence satisfying the required condition. The last assertion follows because
there are no order relations among the minimal elements of a set. If there were infinitely
many, one could form a sequence from them that had no weakly increasing subsequence.
/////

Congruences on commutative monoids: generators

2.4. Fact. Let M be a monoid and let B be a subset of M ×M . Let X(B) be the set of
all pairs (x, xI) such that either x = xI or there is a finite sequence:

x = y1 + x1 ∼ y1 + xI1 = y2 + x2 ∼ y2 + xI2 = · · · = yk + xk ∼ yk + xIk = xI

where for each i = 1, . . . , k, yi ∈ M and either (xi, x
I
i) ∈ B or (xIi, xi) ∈ B. Then

X(B) = ��BXX, the congruence generated by B
Proof. In the statement of the fact, we used the symbol ∼ simply as a marker between
elements in the sequence. But note that wherever it occurs, the elements on either side are
equivalent under any congruence containing B. Hence, ��BXX contains X(B). Now, it is
easy to see that B ⊆ X(B) and that X(B) is an equivalence relation that is closed under
the M -action (x, xI) )→ (m+ x,m+ xI), so X(B) is a congruence. Hence, X(B) contains
��BXX. /////
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Ideals, and the congruences associated with them.

Definition. A subset I ⊆M of a monoid M is an ideal if x+ y ∈ I whenever x ∈ I and
y ∈M .
Here are a few basic facts about ideals:
i) An intersection of ideals is an ideal. Thus, ifX ⊆M there is a smallest ideal containing
X. It is called the ideal generated by X and it is equal to X +M := {x +m | x ∈
X, m ∈M }.

ii) If φ : L → M is a monoid morphism and I ⊆ M is an ideal, then φ−1(I) is an ideal
in L. If φ : L→M is surjective and I ⊆ L is and ideal, then φ(I) ⊆M is an ideal.

iii) A subset I ⊆ N(I) is an ideal iff z ≥ x ∈ I ⇒ z ∈ I. Hence, the ideal generated by
X ⊆M is {y ∈M | y ≥ x, for some x ∈ X }.

iv) By Dickson’s Lemma, every ideal in Nn is finitely generated. Combined with ii), this
shows that every ideal of a finitely generated monoid is finitely generated.

Suppose I ⊆ M is an ideal. The equivalence relation on M that has I as its only non-
singleton class is called the Rees congruence of I. The corresponding quotient monoid has
an element ∞ with the property that ∞ + x = ∞ for all x ∈ M . An element with this
property is said to be absorbing .

The Rees congruences are the simplest of all congruences. Later, we will look at other
other kinds.
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