Lecture 3. Commutative monoids

Definition. A monoid M is commutative if x xy = y x x for all x,y € M.

From now on, monoids will be assumed commutative unless we explicitly say otherwise.
We will use + to denote the monoid operation and 0 to denote the neutral element. The
n-fold sum x + - - - 4+ x is denoted nx.

Definition.
1) M is cancellative if x +y = x + z implies y = z for all z,y,z € M.
2) M is torsionfree if: for all n = 1,2,3,... and all x,y € M, nz = ny implies x = y.
(Here, nx is an abbreviation for the n-fold sum:  +x 4 --- + z.)

The free group over a commutative monoid

2.1. Exercise. Let vy : M — G(M) be the free group over the commutative monoid M.
i) Let ~ be the relation on M x M defined by

(a,b) ~ (¢,d) < forsomeme M,a+d+m=>b+c+m.
Show that ~ is an equivalence relation and that it is closed under the action of M x M:
(¢,m) ((a,b), (c,d)) == (( + a,m +b), (£ + ¢c,;m +d)).

Conclude that ~ is a congruence on M x M.
i1) Show that (M x M)/ ~ is a group and that the morphism

B:M— (Mx M)/ ~;a~ [a,e]

has the universal mapping property of vyys. (Hence G(M) = (M x M)/ ~.)

i1) vy is injective if and only if M is cancellative. If M is cancellative and torsionfree,
then G(M) is torsionfree. However, there is a (non-cancellative) torsionfree M such
that G(M) is torsionfree.

Free commutative monoids.

N denotes the monoid of natural numbers: N = {0,1,2,...}. Let I be a set,. N/ denotes
the product of I copies of N, i.e., the monoid of functions from I toN. If I ={1,2,...,n},
we write N™. If @« € N and i € I then o; € N denotes the value of « at i.

If i € I, then 6* denotes the element of N’ that has value 1 at i and 0 elsewhere. Thus:

J 0, otherwise.

N() denotes the submonoid of N/ consisting of those functions that have finite support.
Note that N) = (§° | i€ I).



2.2. Fact. Let M be any commutative monoid and let ¢ : I — M be any function. Then
there is a unique monoid homomorphism ¢ : NU) — M such that $¢(6?) = ¢(i). (Thus, any
finitely generated (commutative) monoid is isomorphic to N /C for some integer n and
congruence C.)

Dickson’s Lemma.
If o, 3 € NI, we write a < 3 if for each i € I, ; < ;. Thus,

a<B o IyeNa+y=0

Note that any two elements «, 3 have a supremum « V 3 (the coordinatewise maximum of
a and ) and infimum a A § (the coordinate-wise minimum). Also, note that a VvV 3 and
aA B are in N if o and 3 are.

2.3. Lemma. Every sequence a',a?,--- in N" contains a weakly increasing subsequence
a’M) < %) < ... Thus, the set of <-minimal elements in any subset of N" is finite.
Proof. Let o = (at,...,at),i=1,2,..., be a sequence of elements of N*. This contains

a subsequence a®() in which the last coordinate a2 is weakly increasing. This, in turn,
contains a subsequence in which the (n—1)th coordinate is weakly increasing. After n steps,
we have a subsequence satisfying the required condition. The last assertion follows because
there are no order relations among the minimal elements of a set. If there were infinitely

many, one could form a sequence from them that had no weakly increasing subsequence.
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Congruences on commutative monoids: generators

2.4. Fact. Let M be a monoid and let B be a subset of M x M. Let X (B) be the set of
all pairs (z, ') such that either x = 2’ or there is a finite sequence:

T=y1+x1~p T =yt e~y try ==yt o~y t+a, =2

where for each ¢ = 1,...,k, y; € M and either (z;,z}) € B or (z},z;) € B. Then
X(B) = ((B)), the congruence generated by B

Proof. In the statement of the fact, we used the symbol ~ simply as a marker between
elements in the sequence. But note that wherever it occurs, the elements on either side are
equivalent under any congruence containing B. Hence, ((B)) contains X (B). Now, it is
easy to see that B C X (B) and that X (B) is an equivalence relation that is closed under
the M-action (z,2') — (m + x,m + z’), so X(B) is a congruence. Hence, X (B) contains

((B))- /1117



Ideals, and the congruences associated with them.

Definition. A subset I C M of a monoid M is an ideal if x + y € I whenever z € I and
ye M.

Here are a few basic facts about ideals:
i) An intersection of ideals is an ideal. Thus, if X C M there is a smallest ideal containing

X. It is called the ideal generated by X and it is equal to X + M :={x+m |z €
X, meM}.

ii) If ¢ : L — M is a monoid morphism and I C M is an ideal, then ¢~1(I) is an ideal
in L. If ¢ : L — M is surjective and I C L is and ideal, then ¢(I) C M is an ideal.

iii) A subset I € N() is an ideal iff z > 2z € I = z € I. Hence, the ideal generated by
XCMis{ye M|y >z, for some z € X }.

iv) By Dickson’s Lemma, every ideal in N™ is finitely generated. Combined with i), this
shows that every ideal of a finitely generated monoid is finitely generated.

Suppose I C M is an ideal. The equivalence relation on M that has I as its only non-
singleton class is called the Rees congruence of I. The corresponding quotient monoid has
an element oo with the property that oo + x = oo for all £ € M. An element with this
property is said to be absorbing.

The Rees congruences are the simplest of all congruences. Later, we will look at other
other kinds.



