Lecture 4.

This lecture is based on Chapter I of [Miller-Sturmfels]. We describe Stanley-Reisner ideals and consider some combinatorial data associated with them.

Recall:

- $\circ \ I \subseteq \mathbb{N}^n \text{ is an ideal if } I + \mathbb{N}^n \subseteq I.$
- $\circ \text{ If } X \subseteq \mathbb{N}^n, \, \langle X \rangle := X + \mathbb{N} = \{ \, \alpha \in \mathbb{N}^n \mid \xi \leq \alpha \text{ and } \xi \in X \, \}.$
- $\circ\,$ By Dickson's Lemma, every ideal in \mathbb{N}^n has a unique set of minimal generators.

4.1. Fact. Suppose $I, J \subseteq \mathbb{N}^n$ are ideals. Then $I \cap J$ is generated by $\alpha \lor \beta$, where α is a minimal generator of I and β is a minimal generator of J. *Proof*. $\gamma \in I \cap J$ iff $\gamma \ge \alpha$ and $\gamma \ge \beta$ for some minimal generators $\alpha \in I$ and $\beta \in J$.

Stanley-Reisner ideals in \mathbb{N}^n

Associated to any subset $s \subseteq \{1, 2, \ldots, n\}$, we have its characteristic function

$$\chi_s := \sum_{i \in s} \delta^i \in \mathbb{N}^n.$$

In general, we can view an arbitrary element of \mathbb{N}^n as a subset of $\{1, 2, \ldots, n\}$ with "multiplicities" attached to its members. An element all of whose multiplicities are either 0 or 1 is the characteristic function of a set. We call such an elemet *setlike*. For $\alpha \in \mathbb{N}^n$, we define $\operatorname{supp} \alpha := 1 \wedge \alpha$, this being the setlike element of \mathbb{N}^n that vanishes at the same indices as α . Occasionally, we write $i \in \alpha$ to mean $\alpha_i \geq 1$.

4.2. Definition. A simplicial complex Δ is a collection of subsets of $\{1, 2, \ldots, n\}$ such that $\tau \subseteq \sigma \in \Delta$ implies $\tau \in \Delta$. (See [MS], p.4, for related terminology.)

An ideal of \mathbb{N}^n is "upwards closed", so the complement of an ideal is "downwards closed". (We say α is upwards from β if $\alpha = \beta + \gamma$ for some $\gamma \in \mathbb{N}^n$.) Thus, if $I \subseteq \mathbb{N}^n$ is an ideal, then the following collection of subsets of $\{1, 2, \ldots, n\}$ is a simplicial complex:

$$\Delta_I := \{ \sigma \in \{0,1\}^n \mid \sigma \notin I \}.$$

Note that if $I \subseteq J$, then $\Delta_J \subseteq \Delta_I$.

4.3. Definition. Suppose Δ simplicial complex. The *Stanley-Reisner ideal of* Δ is

$$I_{\Delta} := \langle \sigma \mid \sigma \notin \Delta \rangle = \{ \alpha \in \mathbb{N}^n \mid \operatorname{supp} \alpha \notin \Delta \}.$$

4.3.1 Remark. $\alpha \notin I_{\Delta}$ iff supp $\alpha \in \Delta$.

Remark. If $\Delta \subseteq \Delta'$, then $I_{\Delta'} \subseteq I_{\Delta}$. For all $\Delta, \Delta = \Delta_{I_{\Delta}}$. For all $I, I \subseteq I_{\Delta_I}$.

4.4. Definition. I is said to be *prime* if its complement $\mathbb{N}^n \setminus I$ is closed under +.

4.5. Fact. Ideal $I \subseteq \mathbb{N}^n$ is prime if and only if its minimal elements are among the generators of \mathbb{N}^n . *Proof*. If a minimal element of I is not a generator of \mathbb{N}^n , it can be expressed as a sum of two elements that are strictly smaller, and hence are not in I./////

It follows that there is a bijection:

subsets of $\{1, 2, ..., n\} \longleftrightarrow$ prime ideals of \mathbb{N}^n $\sigma \longleftrightarrow \langle \delta^i \mid i \in \sigma \rangle$

Note that $\langle \, \delta^i \mid i \in \sigma \, \rangle = \{ \, \alpha \in \mathbb{N}^n \mid \sigma \wedge \alpha \neq 0 \, \}.$

4.6. Lemma. I_{Δ} is an intersection of prime ideals. Indeed,

$$I_{\Delta} = \bigcap_{\sigma \in \Delta} \langle \, \delta^i \mid i \notin \sigma \rangle.$$

Proof. An element α of \mathbb{N}^n belongs to the intersection \Leftrightarrow for each $\sigma \in \Delta$, $\alpha \in \langle \delta^i \mid i \notin \sigma \rangle$ \Leftrightarrow for each $\sigma \in \Delta$, there is $i \in \text{supp } \alpha$ that is not in $\sigma \Leftrightarrow \text{supp } \alpha \notin \Delta \Leftrightarrow \alpha \in I_\Delta$. /////

Hilbert series

In this section, our point of view changes. We think in terms of the monomial ideal in $S := k[x_1, \ldots, x_n] = k[\mathbb{N}^n]$ rather than in terms of monoid ideals in \mathbb{N}^n . One can easily translate back and forth between these two kinds of object. In this subsection I_{Δ} will denote the ideal in S generated by the monomials x^{σ} , where $\sigma \in \mathbb{N}^n$ is setlike and $\sigma \notin \Delta$. An S-module M is \mathbb{N}^n -graded if $M = \bigoplus_{\beta \in \mathbb{N}^n} M_{\beta}$ and $x^{\alpha} M_{\beta} \subseteq M_{\alpha+\beta}$. If $\dim_k(M_{\alpha}) < \infty$ for all α , the \mathbb{N}^n -graded Hilbert series is:

$$H(M;x) := H(M;x_1,x_2,\ldots,x_n) := \sum_{\alpha \in \mathbb{N}^n} \dim_k(M_\alpha) x^\alpha.$$

Facts.

1.
$$H(S;x) = \prod_{i=1}^{n} (1 + x_i + x_i^2 + \cdots) = \prod_{i=1}^{n} \frac{1}{1 - x_i}$$

2.
$$H(\langle x^{\alpha} \rangle; x) = x^{\alpha} H(S;x)$$

3. Observe that $\sum \{x^{\alpha} \mid \operatorname{supp} \alpha = \sigma \} = \prod_{i \in \sigma} \frac{x_i}{1 - x_i}$. Thus,

$$H(S/I_{\Delta}; x) = \sum \{ x^{\alpha} \mid x^{\alpha} \notin I_{\Delta} \}$$

= $\sum \{ x^{\alpha} \mid \text{supp } \alpha \in \Delta \}$ (see 4.3.1)
= $\sum_{\sigma \in \Delta} \prod_{i \in \sigma} \frac{x_i}{1 - x_i}$
= $H(S; x) \sum_{\sigma \in \Delta} (\prod_{i \in \sigma} x_i \cdot \prod_{i \notin \sigma} (1 - x_i)).$

The K-polynomial of M is $\mathcal{K}(M; x) := H(M; x)/H(S; x)$. Thus,

$$\mathcal{K}(S/I_{\Delta}; x) = \sum_{\sigma \in \Delta} \left(\prod_{i \in \sigma} x_i \cdot \prod_{i \notin \sigma} (1 - x_i) \right).$$