Lecture 5. Generalities—very general—on graded algebras and modules

5.1. Definition. Suppose k is a ring and A is a k-module. let X be a set. An X-grading of A is a decomposition if A into a sum of submodules indexed by X:

i) An X-graded k-module is a sum of k-modules:

$$A = \bigoplus_{\xi \in X} A_{\xi}$$

The elements of A_{ξ} are said to be homogeneous of degree ξ ; we write deg $(a) = \xi$ if $a \in A_{\xi}$. Since 0 belongs to all the A_{ξ} , 0 does not have a unique degree.

ii) Now suppose Γ is a monoid. A Γ -graded k-algebra is a k-algebra A which is Γ -graded as a k-module and which in addition satisfies:

$$A_{\gamma}A_{\lambda} \subseteq A_{\gamma+\lambda}$$
 and $1_A \in A_0$.

iii) Let A be a Γ -graded k-algebra. A (A, Γ) -graded-module (also referred to as a graded A-module, when the grading is obvious from context) is an A-module that is Γ -graded as a k-module, *i.e.*,

$$M = \bigoplus_{\gamma \in \Gamma} M_{\gamma} ,$$

and which in addition satisfies

$$A_{\gamma}M_{\lambda} \subseteq M_{\gamma+\lambda}$$
.

Examples.

- i) Let $S := k[x_1, \ldots, x_n]$. Then S is an \mathbb{N}^n -graded k-algebra. Note that S is also a graded S-module.
- *ii*) The monoid algebra $k[\Gamma]$ is Γ -graded. $(k[\Gamma]_{\gamma})$ is the free k-module generated by X^{γ} .)
- *iii*) Suppose A is a Γ -graded algebra and $\phi : \Gamma \to \Lambda$ is a monoid homomorphism. Then A can be given a Λ -grading by defining for $\lambda \in \Lambda$:

$$A_{\lambda} := \bigoplus \{ A_{\gamma} \mid \phi(\gamma) = \lambda \} .$$

For example, $\mathbb{N}^n \to \mathbb{N}$; $\alpha \mapsto \alpha_1 + \cdots + \alpha_n$ gives the usual grading by total degree on $k[x_1, \ldots, x_n]$.

iv) Let L and M be graded A-modules. Then, $L \oplus M$ is A-graded if we define

$$(L \oplus M)_{\gamma} := L_{\gamma} \oplus M_{\gamma}$$
.

v) Let A be a Γ -graded k-algebra and let B be a Λ -graded k-algebra. Then $A \otimes_k B$ is a k-algebra with multiplication determined by $(a \oplus b)(c \oplus d) = (ac \oplus bd)$ and the distributive law. $A \otimes_k B$ has a grading by $\Gamma \times \Lambda$:

$$(A \otimes_k B)_{(\gamma,\lambda)} := A_\gamma \otimes_k B_\lambda$$
.

With respect to this grading, $A \otimes_k B$ is a $(\Gamma \times \Lambda)$ -graded-k-algebra.

v) Suppose that L is an (A, Γ) -graded-module and M is a (B, Λ) -graded-module. Then $A \otimes_k B$ acts on $L \otimes_k M$ by $(a \otimes b)(\ell \otimes m) = a\ell \otimes bm$. With respect to this action, $A \otimes_k B$ is a $(A \oplus_k B, \Gamma \times \Lambda)$ -graded-module.

5.2. Definition. Let S be a Γ -graded A-module. We can shift the grading by $\gamma \in \Gamma$. It is customary to denote the result $S(-\gamma)$, where the graded pieces are defined by:

$$S(-\gamma)_{\delta} := \bigoplus \{ S_{\lambda} \mid \lambda + \gamma = \delta \} .$$

If Γ is cancellative, this gives $S(-\gamma)_{\delta} := S_{\delta-\gamma}$ if $\delta \geq \gamma$ and $S(-\gamma)_{\delta} := 0$ otherwise. If $s \in S$ and the degree of s in S is 0, then the degree of s in $S(-\gamma)$ is γ .

5.3. Definition. Let A be a Γ -graded k-algebra. A homomorphism $\phi : M \to N$ of A-modules is said to be homogeneous of degree δ if for all $\gamma \in \Gamma$:

$$\phi(M_{\gamma}) \subseteq N_{\gamma} + \delta .$$

The category of (A, Γ) -graded-modules and homogeneous homomorphisms of degree 0 is denoted $\mathcal{M}_{A,\Gamma}$ or just \mathcal{M}_A if Γ is understood.

Let L be an (ungraded) A-submodule of an (A, Γ) -graded-module M. L is said to be a graded submodule of M if L is (A, Γ) -graded and the inclusion map is homogeneous, *i.e.*, $L_{\gamma} \subset M_{\gamma}$, *i.e.*, L is generated by homogeneous elements.

If $\phi: M \to N$ is a morphism of $\mathcal{M}_{A,\Gamma}$, then ker ϕ is a graded submodule of M. If L is a graded submodule of M, then $M/L = \bigoplus_{\gamma \in \Gamma} M_{\gamma}/L_{\gamma}$ is an (A, Γ) -graded-module.

Free modules

The A-module $\bigoplus_n A$ has generators $\epsilon^i := (0, \ldots, 0, 1_A, 0, \ldots, 0)$. Given an A-module M (not graded) and a set of elements $m_i \in M$, there is a unique A-module map $\phi : \bigoplus_n A \to M$ such that $\phi(\epsilon^i) = m_i$.

Suppose, now, that A is Γ -graded. Then, so is $\bigoplus_n A$ (see Example *iv*). The degree of each ϵ_i is 0. Unless deg $(m_i) = 0$ for all *i*, however, ϕ will not be a morphism of $\mathcal{M}_{A,\Gamma}$. To remedy this, we shift the grading on $\bigoplus_n A$, using $\bigoplus_{i=1}^n A(-\deg(m_i))$ instead.