
Lecture 6. Graded morphisms

Part A. Monomial matrices

In the first part of this lecture, we describe the material presented in Miller-Sturmfels,
pages 11—13. The goal is to develop a efficient format for specifying a homogeneous degree
0 morphism

φ :
7
i

A(−γi)→
7
j

A(−δj),

where A is a Γ-graded k-algebra. Such morphisms occur in a free resolution of a (A,Γ)-
graded-module. This explains our interest in this question.

To create the description, let 6i (respectively, 6j) be the generator of A(−γi) (respectively,
A(−δj)). Its degree is γi (respectively, δj). Then φ(6j) =

�
j aji6j , where δj+deg(aji) = γi.

Now,

φ

X3
i

bi6i

~
=
3
i

bi

⎛⎝3
j

aji6j

⎞⎠
=
3
j

X3
i

ajibi

~
6j .

If we let b denote the column vector (bi)
T and interpret it as an element of

�
iA(−γi) by

identifying the column with 1 in the ith place and 0 elsewhere with 6i, and if furthermore
we view a = (aji) as a matrix with entries from A, then

φ(b) = ab .

Additional compression of notation is possible under additional assumptions on A. We
write δj O γi to mean that δj + ξ = γi has a solution. If the solution is unique, we denote
it ξ = γi − δj. Assuming a unique solution, aij ∈ Aγi−δj . Now, suppose k is a field, Aγ is
one-dimensional for all γ ∈ Γ (as is the case when A is a monoid algebra, A = k[Γ]), and
suppose further that Γ is cancellative. Then the degrees γi and δj determine the degree
of aji uniquely: deg(aji) = γi − δj , provided δj O γi. Once a basis element for each Aγ is
chosen, the the coefficient aji will be determined completely by an element λji ∈ k. Thus,
the mapping φ can be represented by a matrix with entries in k. For example, if A = k[Γ],
then:

aji =

F
λjiX

γi−δj if δj O γi;
0 otherwise.

The grade vectors (γi) and (δj) and the matrix (λji) determine φ completely.

See the example on page 13 of [Miller-Sturmfels], which illustrates the presentation of
several morphisms in the manner just described. (The text asserts that morphisms on
page 13 constitute a minimal free resolution. The reader should verify this.)
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Part B. The Koszul complex

We describe the Koszul resolution of k as a k[Nn]-module. Throughout this example, k is
a field.

As background, we review the definition of the reduced (or augmented) chain complex of
an oriented simplicial complex ∆. Let Fi = Fi(∆) denote the set of i-dimensional faces of
∆, i.e., elements of ∆ of cardinality i + 1. For σ ∈ Fi, let eσ ∈ kFi be the function that
has value 1 at σ and is 0 otherwise. Define ∂i : k

Fi → kFi−1 by:

∂i(eσ) = eσ\1 − eσ\2 + eσ\3 − · · ·+ (−1)ieσ\i+1 , (1)

where σ\j denotes σ with its jth element (in the order determined by the given orientation)
dropped. Then, 4C •(∆; k) is the complex:

0←− kF−1 ∂0←− kF0 ∂1←− kF1 ∂2←− · · · ∂d←− kFd ←− 0 ,
where d is the largest dimension of any face of ∆. The reduced homology of ∆ is the
sequence of vector spaces: 4Hi(∆, k) = ker(∂i)/ im(∂i) .
Assume the vertices of ∆ are labeled 1, 2, . . . , n. We modify the above construction by
using S := k[Nn] in place of k and assigning grades in an appropriate way. Explicitly, let

K i(∆) :=
7

σ∈Fi−1
S(−σ).

Here, we are using σ to refer to an element of Nn. For example, (1, 0, . . . , 0) ∈ F0 is the first
vertex in ∆, and (1, 1, 0, 0, . . . , 0) is a one-dimensional simplex, which might or might not
be in F1. Note that we have numbered the free S-modules K i(∆) in such a way that i refers
to the number of elements in each of the faces involved in defining K i(∆). In particular,
K 0(∆) = S is the free module with one generator in degree (0, 0, . . . , 0), corresponding to
the unique empty face (0, 0, . . . , 0). Also, K 1(∆) = S

n. Thus, the numbering of K •(∆) is
shifted from 4C•.
For σ ∈ Fi−1, we let 6σ denote the generator of S(−σ) ⊆ K i(∆). Finally, we define
∂i : K i(∆)→ K i−1(∆) by:

∂i(6σ) = X
σ[1]6σ\1 −Xσ[2]6σ\2 +Xσ[3]6σ\3 − · · ·+ (−1)i−1Xσ[i]6σ\i , (2)

where σ[j] := σ − (σ \ j). (The choice of coefficient is precisely what is needed to balance
degrees.) Then the complex K •(∆) is the following:

0←− K 0(∆)
∂1←− K 1(∆)

∂2←− K 2(∆)
∂3←− · · · ∂d+1←− K d+1(∆)←− 0 . (2.1)

Let K •α(∆) denote the part of K •(∆) in degree α ∈ Nn. Thus,

K iα(∆) ⊆
7
{S(−σ)α | σ ∈ ∆ , cardσ = i & σ ≤ α } ,
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and K iα(∆) has basis, { eσ α := Xα−σ6σ ∈ S(−σ)α | σ ∈ ∆ , cardσ = i & σ ≤ α }. Let us
write ∂iα for the restriction of ∂i to K iα(∆). Then, im(∂iα) ⊆ K (i−1)α(∆). Multiplying
(2) by Xα−σ, we see

∂iα(eσ) = eσ\1 − eσ\2 + eσ\3 − · · ·+ (−1)i−1eσ\i . (3)

Thus, K •α(∆) is the same as the complex �C(∆ ∧ α, k) (except it is shifted–K •α(∆) is
indexed starting from 0 rather that −1), where ∆∧α := {σ ∧α | σ ∈ ∆ } = {σ ∈ ∆ | σ ⊆
suppα }.
Proposition. Let ∆ be the (n − 1)-simplex, i.e. the set of all subsets of { 1, 2, . . . , n }.
Then the complex K • := K •(∆) is a minimal free resolution of S/(x1, . . . , xn).

Proof. It is necessary only to show that (2.1) is exact. Since ∆ is the (n − 1)-simplex,
∆∧α is itself a simplex and therefore has 0 homology. Thus, K •α is exact for each α, and
this establishes the result we need. /////

Question for listeners/readers. Fill in the missing portion of the proof concerning mini-
mality. Refer to Definition 1.24 on page 12 of Miller-Sturmfels.
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