Lecture 6. Graded morphisms

Part A. Monomial matrices

In the first part of this lecture, we describe the material presented in Miller-Sturmfels,
pages 11-13. The goal is to develop a efficient format for specifying a homogeneous degree

0 morphism
¢: P A(—) — P A=),
i J

where A is a I'-graded k-algebra. Such morphisms occur in a free resolution of a (A,TI’)-
graded-module. This explains our interest in this question.

To create the description, let €; (respectively, €;) be the generator of A(—v;) (respectively,
A(—d;)). Its degree is v; (respectively, §;). Then ¢(e;) = >_; aji€;, where §;+deg(aji) = ;.

Now,

() e
(X

If we let b denote the column vector (b;)7 and interpret it as an element of @, A(—;) by
identifying the column with 1 in the i*” place and 0 elsewhere with ¢;, and if furthermore
we view a = (a;;) as a matrix with entries from A, then

Additional compression of notation is possible under additional assumptions on A. We
write J; =< 7; to mean that J; + £ = y; has a solution. If the solution is unique, we denote
it £ = ; — J;. Assuming a unique solution, a;; € A, _s,. Now, suppose k is a field, A, is
one-dimensional for all v € I" (as is the case when A is a monoid algebra, A = k[I']), and
suppose further that I' is cancellative. Then the degrees v; and J; determine the degree
of aj; uniquely: deg(aj;) = — J;, provided §; < ;. Once a basis element for each A, is
chosen, the the coefficient a;; will be determined completely by an element \;; € k. Thus,
the mapping ¢ can be represented by a matrix with entries in k. For example, if A = k['],
then:
aji = {)‘ﬁXW_&j if 0; = %;
0 otherwise.

The grade vectors (7;) and (d;) and the matrix (\j;) determine ¢ completely.

See the example on page 13 of [Miller-Sturmfels], which illustrates the presentation of
several morphisms in the manner just described. (The text asserts that morphisms on
page 13 constitute a minimal free resolution. The reader should verify this.)



Part B. The Koszul complex

We describe the Koszul resolution of k as a k[N"]-module. Throughout this example, & is
a field.

As background, we review the definition of the reduced (or augmented) chain complex of
an oriented simplicial complex A. Let F; = F;(A) denote the set of i-dimensional faces of
A, i.e., elements of A of cardinality i + 1. For o € Fj, let e, € k¥ be the function that
has value 1 at o and is 0 otherwise. Define 9; : k¥ — kfi-1 by:

82‘(60) = €5\1 — €5\2 + €o\3 — " + (_1)i60\i+1 ’ (1)

where o\ j denotes o with its j'" element (in the order determined by the given orientation)
dropped. Then, C4(A;k) is the complex:

0+ kF-1 o gFo Or i B2 04 gFa
where d is the largest dimension of any face of A. The reduced homology of A is the
sequence of vector spaces:

Assume the vertices of A are labeled 1,2,...,n. We modify the above construction by
using S := k[N"] in place of k and assigning grades in an appropriate way. Explicitly, let

Ki(A):= @ S(-o).

oeF;_1
Here, we are using o to refer to an element of N”. For example, (1,0,...,0) € Fy is the first
vertex in A, and (1,1,0,0,...,0) is a one-dimensional simplex, which might or might not

be in F. Note that we have numbered the free S-modules K ;(A) in such a way that i refers

to the number of elements in each of the faces involved in defining K;(A). In particular,

Ko(A) = S is the free module with one generator in degree (0,0, ...,0), corresponding to

the unique empty face (0,0,...,0). Also, K;(A) = S™. Thus, the numbering of K4(A) is

shifted from C,.

For 0 € F;,_1, we let ¢, denote the generator of S(—o) C K;(A). Finally, we define
32‘(60) = Xa[l]ea\l - XU[2160\2 + Xa[glea\s —t (—1)i_1XU[i]€a\z' ) (2)

where o[j] ;=0 — (¢ \ j). (The choice of coeflicient is precisely what is needed to balance
degrees.) Then the complex K4(A) is the following:

0+ Ko(A) 2 Ky (A) 2 Ky(A) & . P K 4 (A) «— 0. (2.1)
Let Ko4(A) denote the part of K4(A) in degree o € N™. Thus,
K;a(A) g@{S(—a)a |lcoe A, cardo=i&o<a},
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and K; ,(A) has basis, { €y := X%, € S(—0)q |0 € A, cardo =i & 0 < a}. Let us
write ;o for the restriction of 9; to K;o(A). Then, im(0;o) € K(;_1)a(A). Multiplying
(2) by X*77, we see

8ia(€g) = €5\1 — €5\2 + €o\3 — """ + (—1)i_1€g\i . (3)

~

Thus, Keq(A) is the same as the complex C(A A a, k) (except it is shifted—K 4 (A) is
indexed starting from O rather that —1), where AAa:={ocAa|ceA}={ceA|ocC

supp « }.

Proposition. Let A be the (n — 1)-simplex, i.e. the set of all subsets of {1,2,...,n}.
Then the complex Ko := K4(A) is a minimal free resolution of S/(z1,...,%n)-

Proof. 1t is necessary only to show that (2.1) is exact. Since A is the (n — 1)-simplex,
A A« is itself a simplex and therefore has 0 homology. Thus, K, is exact for each «, and
this establishes the result we need. //]]/

Question for listeners/readers. Fill in the missing portion of the proof concerning mini-
mality. Refer to Definition 1.24 on page 12 of Miller-Sturmfels.



