
Lecture 7. Betti Numbers

In this talk, S = k[Nn]. All modules will be (S,Nn)-graded-modules. Let

0←−M ←− F0 φ1←− F1 φ2←− · · · φf←− Ff ←− 0

be an augmented free resolution of M in which the matrices aji defining the maps φ
have no nonzero entries in degree 0. In other words, we are assuming that the resolution
is minimal ; see [Miller-Sturmfels]=[MS], page 12. (The minimal free resolution of M is
unique up to isomorphism; see the references in [MS] or [Bruns-Herzog], page 36.) Now
suppose

Fi =
7
α∈Nn

S(−α)βiα ,

with βiα ∈ N being the number of times that S(−α) occurs as a summand of Fi. These
numbers, which are completely determined by M , are called the graded Betti numbers of
M . (Graded Betti numbers may be defined in a similar manner for graded rings other
than S, but there are restrictions on the ring that must be met, without which uniqueness
may fail; see [Bruns-Herzog], page 37.) The goal of this talk is to demonstrate how the
Tor functor can be used to compute the βiα.

We suggest that the reader review Lecture 5 for information on tensor products M ⊗AN .
(Some parts have been revised since the first version was posted, and comments intended
to clarify the following discussion have been included.)

Let M and N be A-modules. Recall that TorA(M,N) is the homology of F•⊗AN , where
F• is a free resolution of M :

TorAi (M,N) = ker(φi ⊗ 1)/ im(φi+1 ⊗ 1).

When the free resolution is graded, then so is TorAi (M,N), as the reader should check.

Lemma. Suppose M is a (S,Nn)-graded k-algebra. Then βiα = dimk TorSi (M,k)α.

Proof. Note that k itself is an (S,Nn)-graded-module, concentrated in degree 0. Thus,
S(−α)⊗S k = k(−α). Also, note that if φ : S(−α)→ S(−γ) is morphism of degree 0, then
φ⊗ 1k : S(−α)⊗ k → S(−γ)⊗ k is the zero map, unless α = γ. Thus, if F• is a minimal
resolution, then

φi ⊗ 1k = 0
for i = 0, 1, . . ., since F• being minimal, every aji has degree > 0. Accordingly,

TorAi (M, k) =
7
α∈Nn

k(−α)βiα ,

and in degree α, we have just k(−α)βiα . This proves the claim. /////
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Recall that TorA(M,N) ∼= TorA(N,M). This enables us to compute TorA(M,N) from
a resolution of N rather than M . In particular, we can compute TorA(M, k) by using
the Koszul resolution K• of k to compute TorA(k,M). This works out particularly nicely
when M is a monomial ideal of S. In fact, the Betti numbers of I turn out to be the Betti
numbers of certain simplicial complexes associated with I.

Definition. Let I ⊆ k[Nn] be a monomial ideal. (We can also view I simply as a monoid
ideal of Nn.) Let γ ∈ Nn. Then

Kα(I) :=
\
τ ∈ {0, 1}n | α− τ ∈ I �.

Theorem. ([MS], 1.34). βiα(I) = dimk 4Hi−1(Kα(I), k).

Proof. Recall that the Koszul resolution K• is:

0
φ0←− S φ1←−

7
|τ |=1

S(−τ) φ2←−
7
|τ |=2

S(−τ) φ3←− · · · .

Here, we are assuming that τ ∈ {0, 1}n. Observe that imφ1 = �x1, . . . , xn X. Now,

βiα(I) = dimk Tor
S
i (k, I)α

= dimk(degree-α part of the i
th homology of K• ⊗S I).

Because I ⊆ S and K• is a sum of free modules, K•⊗S I ⊆ K•⊗SS = K•, so (K• ⊗S I)α ⊆
(K•)α. We saw in Lecture 6 that (K•)α is the reduced chain complex of suppα (shifted
up in homological degree). We shall show that (K• ⊗S I)α is the reduced chain complex
of Kα(I) ⊆ suppα. Indeed,

(Ki ⊗S I)α =
⎛⎝7
|τ |=i

S(−τ)⊗ I
⎞⎠
α

=
7
|τ |=i

I(−τ)α

∼= kKα
i (I),

since

I(−τ)α =
F
k, if α− τ ∈ I;
0, otherwise.

Thus, (K• ⊗S I)α is the reduced chain complex of Kα(I), re-numbered so as to start in
degree 0 rather than −1. /////
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