Lecture 7. Betti Numbers

In this talk, S = k[N"]. All modules will be (5, N")-graded-modules. Let

0 MRy & F & & 0

be an augmented free resolution of M in which the matrices a;; defining the maps ¢
have no nonzero entries in degree 0. In other words, we are assuming that the resolution
is minimal; see [Miller-Sturmfels]=[MS], page 12. (The minimal free resolution of M is
unique up to isomorphism; see the references in [MS] or [Bruns-Herzog|, page 36.) Now

suppose
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with ;o € N being the number of times that S(—a) occurs as a summand of F;. These
numbers, which are completely determined by M, are called the graded Betti numbers of
M. (Graded Betti numbers may be defined in a similar manner for graded rings other
than S, but there are restrictions on the ring that must be met, without which uniqueness
may fail; see [Bruns-Herzog|, page 37.) The goal of this talk is to demonstrate how the
Tor functor can be used to compute the (;,.

We suggest that the reader review Lecture 5 for information on tensor products M ® 4 N.
(Some parts have been revised since the first version was posted, and comments intended
to clarify the following discussion have been included.)

Let M and N be A-modules. Recall that Tor” (M, N) is the homology of Fy ® 4 N, where
F, is a free resolution of M:

Tor (M, N) = ker(¢; ® 1)/ im(¢i11 ® 1).

When the free resolution is graded, then so is Tor: (M, N), as the reader should check.
Lemma. Suppose M is a (S,N")-graded k-algebra. Then (3;, = dimy Torf(M, k)q-

Proof. Note that k itself is an (S5, N")-graded-module, concentrated in degree 0. Thus,
S(—a)®sk = k(—a). Also, note that if ¢ : S(—a) — S(—7) is morphism of degree 0, then
pR1;: S(—a)®k — S(—v) ® k is the zero map, unless & = . Thus, if F, is a minimal
resolution, then

¢ @1 =0

for i =0,1,..., since F, being minimal, every a;; has degree > 0. Accordingly,

Tor] (M, k) = €D k(—a)Pe,
aeNn

and in degree o, we have just k(—a)?=. This proves the claim. /]]]/
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Recall that Tor” (M, N) = Tor®(N,M). This enables us to compute Tor(M, N) from
a resolution of N rather than M. In particular, we can compute TorA(M , k) by using
the Koszul resolution K, of k& to compute TorA(k:, M). This works out particularly nicely
when M is a monomial ideal of S. In fact, the Betti numbers of I turn out to be the Betti
numbers of certain simplicial complexes associated with I.

Definition. Let I C k[N"]| be a monomial ideal. (We can also view I simply as a monoid
ideal of N™.) Let v € N™. Then

K*(I):={7e{0,1}" |a—T€I}.

Theorem. ([MS], 1.34). Bio(I) = dim, H;_1 (K*(I), k).
Proof. Recall that the Koszul resolution K, is:

0% 5 @B S(—r) & @ S(-r) &
|r|=2

I7|=1
Here, we are assuming that 7 € {0,1}". Observe that im ¢y = (z1,...,2, ). Now,

Bia(I) = dimy, Torf(k, 1),
= dimg (degree-a part of the i** homology of K, ®g I).

Because I C S and K, is a sum of free modules, Kq®g1 C K, ®g5.5 = K,, so (K, ®g I)a C
(Ke),- We saw in Lecture 6 that (K,), is the reduced chain complex of supp o (shifted
up in homological degree). We shall show that (K, ®g I),, is the reduced chain complex
of K*(I) C supp a. Indeed,

Ki@sI),=| P S eI
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= @ I(—7)q

|T|=i

o KD,
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since

k, ifa—71e€el;
I(=7)a = {O, otherwise.

Thus, (Ke ®g 1), is the reduced chain complex of K®(I), re-numbered so as to start in
degree 0 rather than —1. //]]/



