Lecture 7. Betti Numbers

In this talk, $S = k[\mathbb{N}^n]$. All modules will be (S, \mathbb{N}^n) -graded-modules. Let

$$0 \longleftarrow M \longleftarrow F_0 \xleftarrow{\phi_1} F_1 \xleftarrow{\phi_2} \cdots \xleftarrow{\phi_\ell} F_\ell \longleftarrow 0$$

be an augmented free resolution of M in which the matrices a_{ji} defining the maps ϕ have no nonzero entries in degree 0. In other words, we are assuming that the resolution is *minimal*; see [Miller-Sturmfels]=[MS], page 12. (The minimal free resolution of M is unique up to isomorphism; see the references in [MS] or [Bruns-Herzog], page 36.) Now suppose

$$F_i = \bigoplus_{\alpha \in \mathbb{N}^n} S(-\alpha)^{\beta_{i\alpha}},$$

with $\beta_{i\alpha} \in \mathbb{N}$ being the number of times that $S(-\alpha)$ occurs as a summand of F_i . These numbers, which are completely determined by M, are called the graded Betti numbers of M. (Graded Betti numbers may be defined in a similar manner for graded rings other than S, but there are restrictions on the ring that must be met, without which uniqueness may fail; see [Bruns-Herzog], page 37.) The goal of this talk is to demonstrate how the Tor functor can be used to compute the $\beta_{i\alpha}$.

We suggest that the reader review Lecture 5 for information on tensor products $M \otimes_A N$. (Some parts have been revised since the first version was posted, and comments intended to clarify the following discussion have been included.)

Let M and N be A-modules. Recall that $\operatorname{Tor}^{A}(M, N)$ is the homology of $F_{\bullet} \otimes_{A} N$, where F_{\bullet} is a free resolution of M:

$$\operatorname{Tor}_{i}^{A}(M,N) = \operatorname{ker}(\phi_{i} \otimes 1) / \operatorname{im}(\phi_{i+1} \otimes 1).$$

When the free resolution is graded, then so is $\operatorname{Tor}_i^A(M, N)$, as the reader should check.

Lemma. Suppose M is a (S, \mathbb{N}^n) -graded k-algebra. Then $\beta_{i\alpha} = \dim_k \operatorname{Tor}_i^S(M, k)_{\alpha}$.

Proof. Note that k itself is an (S, \mathbb{N}^n) -graded-module, concentrated in degree 0. Thus, $S(-\alpha) \otimes_S k = k(-\alpha)$. Also, note that if $\phi : S(-\alpha) \to S(-\gamma)$ is morphism of degree 0, then $\phi \otimes 1_k : S(-\alpha) \otimes k \to S(-\gamma) \otimes k$ is the zero map, unless $\alpha = \gamma$. Thus, if F_{\bullet} is a minimal resolution, then

$$\phi_i \otimes 1_k = 0$$

for $i = 0, 1, \ldots$, since F_{\bullet} being minimal, every a_{ii} has degree > 0. Accordingly,

$$\operatorname{Tor}_{i}^{A}(M,k) = \bigoplus_{\alpha \in \mathbb{N}^{n}} k(-\alpha)^{\beta_{i\alpha}}$$

and in degree α , we have just $k(-\alpha)^{\beta_{i\alpha}}$. This proves the claim. /////

Recall that $\operatorname{Tor}^{A}(M, N) \cong \operatorname{Tor}^{A}(N, M)$. This enables us to compute $\operatorname{Tor}^{A}(M, N)$ from a resolution of N rather than M. In particular, we can compute $\operatorname{Tor}^{A}(M, k)$ by using the Koszul resolution \mathbb{K}_{\bullet} of k to compute $\operatorname{Tor}^{A}(k, M)$. This works out particularly nicely when M is a monomial ideal of S. In fact, the Betti numbers of I turn out to be the Betti numbers of certain simplicial complexes associated with I.

Definition. Let $I \subseteq k[\mathbb{N}^n]$ be a monomial ideal. (We can also view I simply as a monoid ideal of \mathbb{N}^n .) Let $\gamma \in \mathbb{N}^n$. Then

$$\mathbf{K}^{\alpha}(I) := \left\{ \tau \in \{0,1\}^n \mid \alpha - \tau \in I \right\}.$$

Theorem. ([MS], 1.34). $\beta_{i\alpha}(I) = \dim_k \widetilde{H}_{i-1}(\mathbf{K}^{\alpha}(I), k).$

Proof. Recall that the Koszul resolution \mathbb{K}_{\bullet} is:

$$0 \xleftarrow{\phi_0} S \xleftarrow{\phi_1} \bigoplus_{|\tau|=1} S(-\tau) \xleftarrow{\phi_2} \bigoplus_{|\tau|=2} S(-\tau) \xleftarrow{\phi_3} \cdots$$

Here, we are assuming that $\tau \in \{0,1\}^n$. Observe that im $\phi_1 = \langle x_1, \ldots, x_n \rangle$. Now,

$$\beta_{i\alpha}(I) = \dim_k \operatorname{Tor}_i^S(k, I)_{\alpha}$$

= dim_k(degree- α part of the *i*th homology of $\mathbb{K}_{\bullet} \otimes_S I$).

Because $I \subseteq S$ and \mathbb{K}_{\bullet} is a sum of free modules, $\mathbb{K}_{\bullet} \otimes_{S} I \subseteq \mathbb{K}_{\bullet} \otimes_{S} S = \mathbb{K}_{\bullet}$, so $(\mathbb{K}_{\bullet} \otimes_{S} I)_{\alpha} \subseteq (\mathbb{K}_{\bullet})_{\alpha}$. We saw in Lecture 6 that $(\mathbb{K}_{\bullet})_{\alpha}$ is the reduced chain complex of supp α (shifted up in homological degree). We shall show that $(\mathbb{K}_{\bullet} \otimes_{S} I)_{\alpha}$ is the reduced chain complex of $\mathbf{K}^{\alpha}(I) \subseteq \text{supp } \alpha$. Indeed,

$$(\mathbb{K}_i \otimes_S I)_{\alpha} = \left(\bigoplus_{|\tau|=i} S(-\tau) \otimes I \right)_{\alpha}$$
$$= \bigoplus_{|\tau|=i} I(-\tau)_{\alpha}$$
$$\cong k^{\mathbf{K}_i^{\alpha}(I)}.$$

since

$$I(-\tau)_{\alpha} = \begin{cases} k, & \text{if } \alpha - \tau \in I; \\ 0, & \text{otherwise.} \end{cases}$$

Thus, $(\mathbb{K}_{\bullet} \otimes_{S} I)_{\alpha}$ is the reduced chain complex of $\mathbf{K}^{\alpha}(I)$, re-numbered so as to start in degree 0 rather than -1.