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Abstract. Henriksen and Isbell showed in 1962 that commutative rings
that have nilpotent elements sometimes admit total orderings that vio-
late equational laws (in the language of lattice-ordered rings) that are
satisfied by all totally-ordered fields. In this paper, we construct and
classify some instances of this peculiar phenomenon. We also introduce
a certain construction reminiscent of algebra cohomology and show how
in certain cases it detects peculiar orders.

0. Introduction

In the early 20th century, ordered fields appeared in the work of Hilbert (Grundlagen der
Geometrie), in the work of Hahn (representations of ordered fields) and in the work of
Artin and Schreier (on Hilbert’s 17th Problem). Since the middle of the 20th century,
the study of ordered rings has been strongly tied with real algebraic geometry. Reduced
rings (i.e., rings without nilpotents) have been the most important algebraic objects in
this context. Standard (but by no means trivial) abstract geometric methods allow one
systematically to generalize the theory of ordered fields to build up a theory of orderings
for reduced rings; see, e.g., [SM].

Rings with nilpotents present a whole different set of problems. Important work
related to the ordering of such rings seems to begin in the middle of the last century, when
ordered structures were studied abstractly for their own sake. Some landmarks include:
Birkhoff and Pierce’s 1956 work [BP]—which defined and studied lattice-ordered rings from
the perspective of universal algebra, Hion’s 1957 work on generalized valuations [Hi], and
the 1962 work of Henriksen and Isbell [HI] on so-called “formally real” f -rings. Henriksen
and Isbell greatly deepened the connections to universal algebra, and Isbell developed the
theory further in the remarkably original paper [I].

The phenomena that concern us in the present paper were first noticed by Henriksen
and Isbell. Sections 1 through 4 trace ideas relevant to our central theme through the
three sources just listed. At the end of section 4, we give an example of a totally-ordered
finite-dimensional algebra over R that violates an order-theoretic law that is satisfied by all
totally-ordered fields. Most of the rest of this paper is concerned with understanding how
and why this example works and finding a general setting that might make sense of a large
class of similar examples. In sections 5 and 6, we examine the example and its generaliza-
tions from the perspective of semigroup rings and we exhibit a twisted semigroup ring that
shows that the canonical valuation of Hion may fail to detect peculiar orders. In sections
7 and 8, we examine twistings of semigroup rings explicitly and make some attempts to
establish a general framework for considering peculiar orders by using a cohomology group
that classifies twists up to graded isomorphism.

Rings with nilpotents arise naturally in geometric settings, as stressed by Brumfiel
[B], but the connections have not yet been examined deeply. One area of current research
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where a better understanding is needed occurs in relation to the Pierce-Birkhoff Conjecture
(PBC). This challenging problem was first stated in [BP]; a more recent source is [M]. The
approach that seems most promising (to me) requires one to consider the set of all the
orderings of a polynomial ring A that agree up to a certain order of vanishing with a
given order. To understand the structure of this set, it would be useful to have an explicit
statement of the conditions that allow an order on A/I to lift to a A, where I is a given
ideal that is convex for some given order. I, of course, need not be prime. I hope to
develop the connections to the PBC in a future paper.

Acknowledgment. These notes summarize and supplement a talk given on October
19, 2004 in the Seminaire de structures algebriques ordonees, U. F. R. Mathématiques,
Université Paris 7. I thank Max Dickmann for the invitation to speak. I also thank
the CNRS, the Université d’Angers and my hosts in Angers, Daniel Schaub and Francois
Lucas, for providing the best imaginable setting for mathematical work.

1. Basic facts

All rings in this paper are commutative and have a unit.

Definition. A totally ordered ring—or “toring” for short—is a ring A equipped with a
total order ≤ that satisfies the following conditions:

• for all a, b, c ∈ A, if a ≤ b then a + c ≤ b + c, and

• for all a, b, c ∈ A, if a ≤ b and 0 ≤ c then ac ≤ bc.

A toring morphism is an order-preserving ring homomorphism between torings. An ideal
I in a toring A is said to be “convex” if for all x, y ∈ A,

(0 ≤ x ≤ y & y ∈ I) ⇒ x ∈ I.

Fact. The kernel of any toring morphism is convex. If I is convex, then

x + I ≤ y + I :⇔ x ≤ y

unambiguously defines toring order on A/I.

Fact. Any toring that is not a domain contains nilpotent elements.

Proof. If 0 ≤ x ≤ y and xy = 0, then x2 = 0.

We use the word “tomonoid” to mean a totally-ordered commutative monoid, i.e., a
monoid with total order satisfying x ≤ y ⇒ x + z ≤ y + z.
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2. The work of Hion (1957)
Hion’s paper [Hi] defines and studies a natural “generalized valuation” on any toring. We
say “generalized” because the Hion valuation takes values in a tomonoid rather than in a
totally-ordered group. In this section, we shall summarize the parts of Hion’s work that
are relevant to our present purposes.

Definition. Let (A,≤) be a toring and let a, b ∈ A. We say that a and b are archimedean
equivalent if there are natural numbers m and n with |b| ≤ m|a| and |a| ≤ n|b|.

We leave it to the reader to verify that archimedean equivalence is an equivalence
relation on A. The equivalence class of a is denoted h(a). It is called the archimedean
class of a. Let H(A) denote the set of all archimedean classes of A. In H(A), the following
rules define a monoid operation and an order.

• h(a) + h(b) := h(ab)
• h(a) ≤ h(b): iff |b| ≤ |a|

Note that h reverses order; this conforms to certain notational customs in valuation theory.
We leave to the reader the straightforward verification that the definitions are independent
of the representatives chosen. Thus, H(A) has a natural tomonoid structure. Note that
∞ := h(0) is the largest element of H(A), and it is absorbing: ∞ + h(a) = ∞ for all a.
(A monoid can have at most one absorbing element, for if x and y are both absorbing,
x = x + y = y.)

In addition to the properties already mentioned, the reader may easily verify that
H(A) satisfies

• h(a + b) ≥ min{h(a), h(b) }, with equality whenever h(a) 6= h(b).
Thus, h possesses all the properties of a valuation, except that the target is only a monoid,
not a group with an absorbing element adjoined, as in a typical valuation.

Next, we identify a property that characterizes the tomonoids that arise as H(A).

Definition. Let H be a tomonoid. We call H a “Hion tomonoid” if it has a largest
element ∞, this element is absorbing and H satisfies the following weak cancelation law:
for all x, y, z ∈ H:

x + z = y + z 6= ∞ ⇒ x = y.

Theorem (Hion). 1) If A is a toring, then H(A) is a Hion tomonoid. 2) Moreover, for
any Hion tomonoid H, there is a toring A such that H(A) is isomorphic to H.

Proof of 1). Suppose a, b, c ∈ A. We prove the contrapositive. Suppose h(a) 6= h(b).
Without loss of generality, h(a) < h(b). Then n|b| ≤ |a| for all n ∈ N, and therefore
n|bc| ≤ |ac| for all n ∈ N. Suppose h(bc) = h(ac). Pick m ∈ N such that |ac| ≤ m|bc|.
Then we get n|bc| ≤ m|bc| for all n ∈ N, so |bc| = 0, so h(b) + h(c) = ∞.

Proof of 2). If R is a ring and S is a monoid, the monoid ring R[S] is the set of all
finite formal sums r1X

s1 + · · · + rnXsn, where X is an indeterminate, ri ∈ R and si ∈ S.
Multiplication defined by the rule XsXt = Xs+t and distributivity. If S is a tomonoid,
then we say g ∈ R[S] is in normal form when it is written with exponents of ascending
order:

g = r1X
s1 + · · · + rnXsn ,
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with ri 6= 0 and s1 < s2 < · · · < sn. Now suppose S is a Hion tomonoid and R is a toring
with no zero-divisors. Let R[S]∗ denote the quotient of R[S] obtained by identifying X∞

with 0, ordered in such a way that an element a1X
h1 + · · · in normal form is positive iff

a1 > 0R. The Hion condition suffices to show that products of non-negative elements are
non-negative (as the reader is invited to check).

Definition. The tomonoid algebra R[S]∗ := R[S]/(X∞) introduced in the proof will be
called “the Hion algebra of S over R”.

3. Work of Birkhoff and Pierce (1956)

Birkhoff and Pierce initiated the study of f -rings in [BP]. An f -ring is a member of the
equational class of ring-with-binary-operation ∨, whose laws are the laws of commutative
rings together with the following laws for ∨:

x∨(y ∨ z) = (x∨ y)∨ z,

x∨ y = y ∨x,

x∨x = x,

(x∨ y) + z = (x + z)∨(y + z),
(0∨ z)(x∨ y) = (0∨ z) x∨(0∨ z) y.

(In [BP], f -rings that failed to have identity were also considered. The defining identities for
non-unital f -rings differ in non-obvious ways from those given above, but these subtleties
are not important in the present context.)

Any toring is an f -ring with respect to the operation x∨ y := max{x, y }, but in
general an f -ring need not be totally-ordered. Besides the torings, the most extensively
studied examples of f -rings are the function rings, e.g., C(X), the ring of all continuous
real-valued functions on a topological space X. In fact, the “f” in “f -ring” stands for
“function”.

An `-ring is a ring endowed with a binary operation ∨ that satisfies all but the last
of the f -ring identities, above. In [BP], Birkhoff and Pierce showed that any f -ring—but
not any `-ring—is both a subring and sub-∨-lattice of a product of totally ordered rings.
In particular, a lattice-ring identity that is violated by an f -ring is violated by a toring.
This provides a way to use the tools of universal algebra to treat questions about torings
by rephrasing them as questions about f -rings.

4. Work of Henriksen and Isbell (1962)

In [HI], Henriksen and Isbell undertook a deep study of the equational theory of f -rings.
We summarize the relevant parts.

Theorem 1 [HI]. All totally-ordered fields satisfy the same lattice-ring identities, and
not all of these identities are implied by the f -ring identities.

The reader is referred to [HI] for the proof of the first assertion. Later in this section,
we will present an explicit example that proves the second. Henriksen and Isbell called a
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toring that satisfies all lattice-ring identities satisfied by a totally-ordered field “formally
real”. They described a 9-generator toring that is not formally real and that has the
additional property that all 8-generator sub-torings are formally real, thus showing that at
least 9 variables are required to axiomatize the equational theory of formally real f -rings.
Their example was a Hion algebra of a tomonoid with 80 elements. In 1972 Isbell [I]
showed, by generalizing this example, that the equational theory of formally real f -rings
does not have a base with a finite number of variables. Henriksen and Isbell also proved
the following characterization of formally real torings.

Theorem 2. A toring is formally real (i.e., satisfies all the lattice-ring identities that are
true in a totally-ordered field) if and only if it is a quotient (by a convex ideal) of a totally
ordered toring without zero-divisors.

The “if” direction of the proof is easy: any toring without zero-divisors is a subtoring
of a tofield, and equational laws are preserved by subalgebras and quotient algebras. We
sketch the ideas in the “only if” part. Suppose A is a formally real toring. It follows from
Theorem 1 that the free formally real f -ring F (E) on E generators is the sub-f -ring of
the f -ring of all Q-valued functions on QE that is generated by the projections. We can
construct a surjection φ : F (E) → A. The kernel is an `-prime `-group ideal, hence is
contained in a minimal `-prime `-group ideal, J , say. But any such `-group ideal is also a
ring ideal, as shown in standard references on ordered algebra, such as [BKW]. The proof
is completed by showing that J is in fact disjoint from the sub-ring Z[ πe | e ∈ E ] ⊆ F (E)
generated by the projections, so the quotient F (E)/J is in fact a total ordering of this
domain. See [HI] for details.

Example. Here is a ring-lattice identity true in all totally-ordered fields, but violated in a
toring:

0 = 0 ∨
(
x ∧ y ∧ z ∧ (x3 − yz) ∧ (y2 − xz) ∧ (z2 − x2y)

)
. (1)

This is true in every totally-ordered field, for in a totally-ordered field it is impossible for
x, y, z as well as all the binomials to be positive all at once. If the variables and the first
two binomials are positive, then x3 > yz and y2 > xz, so x3y2 > xyz2. Multiplying by
x−1y−1 > 0, we get x2y > z2. This makes the last binomial negative. Yet identity (1)
is not an f -ring identity. Here is a toring in which it fails. Let S be the monoid whose
elements are the integers

0, 9, 12, 16, 18, 21, 24, 25, 27, 28, 30, 32

together with an absorbing element ∞. The monoid operation is standard integer addition,
unless a + b > 32, in which case we take a + b = ∞. Now, order S so that

0 < 9 < 12 < 16 < 18 < 21 < 24 < 25 < 27 < 28 < 32 < 30 < ∞.

Note that 32 is not in its “usual” place. It is easy—if tedious—to check that with this
order S is a Hion tomonoid. Hence we may form the Hion algebra R[S]∗. If we set
x = X9, y = X12 and z = X16, we get a counterexample to the identity. All the strict
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inequalities x3 > yz, y2 > xz, and z2 > x2y hold, and the right hand side of (1) is equal
to z2 > x2y = X32 − X30 6= 0. (Recall that the order in R[A]∗ reverses the order in S.)
(I found this example around 1997 and discussed it with Isbell, who was unaware at the
time of an example with only three variables, though he supplied examples with four. It
appears to be one of the simplest examples possible.)

I will say “the tofield identities” as a synonym for “the equational theory of formally
real f -rings.” Already, it is possible to state two significant conjectures. The rationale for
these conjectures will be explained in the course of the remainder of this paper.

Conjecture A. Every 2-variable tofield identity is a consequence of the f -ring identities.

Conjecture B. The 3-variable tofield identities do not have a finite base.

5. Peculiarities detectable by the Hion valuation
The example we constructed in the last section depended on the creation of a Hion
tomonoid with deviant properties. This raises several questions which we examine in
the present section and the next: What properties of a Hion tomonoid S are necessary and
sufficient for R[S]∗ to be formally real? What special properties do the Hion tomonoids of
formally real torings posses? If a toring fails to be formally real, must this be manifest in
the Hion tomonoid of A?

Definition. Suppose S is a monoid and K ⊆ S. K is called a “monoid ideal” if k ∈
K & s ∈ S ⇒ k+s ∈ K. If S is a tomonoid and K is an ideal, we say that K is “convex”
if x ≥ y ∈ K ⇒ x ∈ K.

Lemma. Let S be a tomonoid with convex ideal K. On the set (S \ K) ∪ {∞}, there is
a tomonoid operation + defined by

a + b :=
{

a +S b, if a +S b 6∈ K;
∞ if a = ∞ or b = ∞ or a +S b ∈ K.

This tomonoid is denoted S/K and it is called a truncation of S at K.

In case K = {x | x ≥ a }, we denote the resulting tomonoid S/a. Note that K may
be empty, in which case the construction adjoins to S a new element that is absorbing. If
S already contains an absorbing element a and K is empty, then in S/K, a is no longer
absorbing since a + ∞ = ∞.

Definition. A “formally real tomonoid” is a tomonoid that is isomorphic (as a tomonoid)
to a truncation of a subtomonoid of a totally ordered abelian group.

Observe that every formally real tomonoid is Hion. The following propositions explain
the connection to formally real torings.

Proposition. If S is a formally real tomonoid and R is a totally-ordered domain, then
R[S]∗ is a formally real toring.

Proof . If S were a counterexample, R[S] would contain finitely many elements violating
a tofield identity. These elements would be contained in a subalgebra of R[S] of the form
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R[S′] with S′ ⊆ S finitely generated, providing a finitely generated counterexample. Thus,
it suffices to prove the assertion when S is finitely generated. In this case, S = T/K is a
truncation of a subtomonoid T of a totally ordered group with underlying group Zn. Now,
R[T ] is a totally-ordered domain since it is a subring of the ring of Laurant polynomials
R[X±1

1 , . . .X±i
n ]. Also, R[T ] has a natural toring order induced by the order on T . Finally

there is a natural, order-preserving surjection R[T ] → R[S]∗.

Proposition. If A is a formally real toring then H(A) is formally real.

Remark. The converse is false. An example will be given in the next section.
Proof . There a toring surjection φ : D → A, where D is a totally ordered domain. Let
F be the ordered field of fractions of D. Then H(D) ⊆ H(F ), and the latter (with ∞
removed) is a totally ordered group. Now it suffices to show that if h(φ(x)) = h(φ(y)),
then either h(x) = h(y) or h(φ(y)) = ∞. Suppose x, y ∈ D+, h(x) < h(y) and φ(y) 6= 0.
Then x > ny for all n ∈ Z, and x > z for all z ∈ ker φ. It follows that h(φ(x)) < h(φ(y)).

Corollary. Let S be a Hion tomonoid. Then S is formally real as a tomonoid if and only
if R[S]∗ is formally real as a toring.

There is an important class of tomonoids that is closely related to the formally real
tomonoids but is properly larger. A tomonoid is formally integral if its order lifts to one—
hence to any—free monoid of which it is an image. This property is explored at length in
[E]. A formally real tomonoid is formally integral, but not very formally integral tomonoid
is Hion and even if it is, it need not be formally real.

Here is an example of a formally integral Hion tomonoid that is not formally real. Let
U be the quotient of 〈9, 12, 16〉/33 obtained by identifying 30 and 32. Using a, b and c to
denote 9, 12 and 16, respectively, we have:

U = { 0 < a < b < c < 2a < a + b < 2b < a + c < 3a < b + c < 2a + b = 2c < ∞}.

U is a formally integral Hion tomonoid but it is not an formally real, since 2a + b < 2c in
any totally ordered group in which 2b < a + c and 3a < b + c.

In her 1999 LSU Ph.D. dissertation, Gretchen Whipple showed that every positive
2-generator Hion tomonoid is formally real. The first step of the proof was to show that
every 2-generator tomonoid is formally integral. This itself is a non-trivial result. A proof,
based on a kind of Euclidean algorithm applied to lattice vectors, can be found in [E].
Whipple’s work is the first piece of circumstantial evidence for Conjecture A. A weaker
conjecture is:

Conjecture A.1. The Hion tomonoid of any 2-generator toring is formally real.

Note that the Hion tomonoid of a 2-generator ring may fail to be generated as a monoid
by 2 elements. (For example, the Hion tomonoid of R[ t4, t6 + t7 ] (0 < t << 1) requires
three generators.) Nonetheless, it satisfies extremely strong conditions that have been
extensively investigated in the study of plane curve singularities; see [C]. In particular,
Theorem 6.1 of [E] seems to apply to these tomonoids, showing that they are at least
formally integral.
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6. A non-formally real toring whose Hion tomonoid is formally real.

The example is a twisted monoid algebra. Such objects have been studied recently under
the name “binomial algebras” by Sturmfels and others; see [S]. Years ago, Anderson and
Ohm pointed out that the ways of twisting a monoid algebra are classified by the second
cohomology of the monoid with coefficients in the group of units of the ring of scalars; see
[AO]. We will discuss the implications of this after the example. What seems interesting
here is the connection between cohomology and the structure of orderings.

Example. Let A = Aa,b,c := R[X, Y, Z]/J , where

J = 〈X3 − aY Z, Y 2 − bXZ, Z2 − cX2Y, X2Z, X4, X3Y 〉.

Let x, y and z stand for the residues of X, Y and Z in A. Assigning the degrees 3, 4 and
5 to the variables X, Y and Z, respectively, A is graded by the tomonoid

H := { 0, 3, 4, 5, 6, 7, 8, 9, 10,∞}.

We have
A = A0 ⊕ A3 ⊕ A4 ⊕ · · · ⊕ A10,

and dimR Ai = 1 for i = 0, 3, 4, . . . , 10. Assuming that 0 < a, b, c, we can totally order A
as a ring by requiring that x, y, z be positive (thus determining the order of each graded
piece) and extending to A lexicographically. That is, we put

0 ≤ λ0 + λ3x + λ4y + λ5z + λ6x
2 + λ7xy + λ8y

2 + λ9x
3 + λ10x

2y

if all the coefficients vanish or the first non-zero coefficient is positive. Note that the Hion
tomonoid of A is H, and H is obviously formally real. (Indeed, H ∼= 〈3, 4, 5〉/11.)

Assertion. With the order described above, Aa,b,c is formally real if and only if abc = 1.

Proof . If abc = 1, then A is isomorphic to the tomonoid algebra R[H]∗, which is a quotient
of R[t3, t4, t5], ordered so that 0 < t << 1. For the converse, suppose that abc 6= 1. Let
φ : R[X, Y, Z] → A be defined by φ(f) := f + J . It suffices to show that there is no total
order ≤ on R[X, Y, Z] such that f ≤ g ⇒ φ(f) ≤ φ(g). We treat the case when abc < 1,
the case abc > 1 admitting an analogous treatment. Pick δ > 1 so that abcδ2 < 1. If ≤0

is a total order on R[X, Y, Z] preserved by φ, then

0 <0 X, 0 <0 Y , 0 <0 Z,

X3 <0 aδY Z and Y 2 <0 bδXZ,

and hence
X2Y <0 abδ2Z2.

Thus, φ(X2Y ) ≤A abδ2φ(Z2) = abcδ2φ(X2Y ) < φ(X2Y ). But this is obviously impossi-
ble, so no order on R[X, Y, Z] preserved by φ exists.
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Conjecture B (stated at the end of §2) comes from considering the possible mod-
ifications of the example above. Suppose that σ1, σ2 and σ3 form a minimal gener-
ating set for a submonoid S ⊆ N. Let k be a field, and consider the monoid algebra
k[S] ∼= k[X1, X2, X3]/I, graded by the weighting w(Xn1

1 Xn2
2 Xn3

3 ) := σ1n1 + σ2n2 + σ3n3.
As shown by Herzog [H], I has either two or three minimal generators. In the former case,
I is a complete intersection. The latter case is generic (see [MS], page 187) and in this
case the generators of I are of the form

b1 := Xn11
1 − Xn12

2 Xn13
3

b2 := Xn22
2 − Xn21

1 Xn23
3

b3 := Xn33
3 − Xn31

1 Xn32
2

where the nij > 0 and nii is the smallest exponent of Xi that occurs in an element of I
with the same structure as bi, i.e., a difference between a power of Xi an a monomial in
the other two variables. It can be shown (see [H]) that n11 = n21 + n31, n22 = n12 + n32

and n33 = n13 + n23. Thus, the bi satisfy the following syzygies:

0 = Xn32
2 b1 + Xn13

3 b2 + Xn21
1 b3,

0 = Xn23
3 b1 + Xn31

1 b2 + Xn12
2 b3,

of weight σ2n32 + σ1n11 and σ3n23 + σ1n11, respectively. The weights of the syzygies are,
of course, greater than the weights of any of the generators. Let J be the ideal:

〈Xn11
1 − aXn12

2 Xn13
3 , Xn22

2 − bXn21
1 Xn23

3 , Xn33
3 − cXn31

1 Xn32
2 〉 ∨ J0,

where J0 is the monomial ideal generated by the monomials whose weight is greater than
or equal to the weight of a syzygy. Arguing as in the example, we see that R[X1, X2, X3]/J
has a total order and that if abc 6= 1, then this order violates the identity:

0 = 0 ∨
(
X1 ∧ X2 ∧ X3 ∧ b1 ∧ b2 ∧ b3

)
. Id (σ1, σ2, σ3)

One conjectures that the identities Id (σ1, σ2, σ3) are independent of one another.
There is no apparent way that the violations of the tofield identities in these examples
could all be deduced from some finite set of identities, hence Conjecture B.

7. Twisted monoid algebras and their graded equivalence.

Here, we extend the meanings of some standard ideas from homological algebra just slightly
to be able to apply them to the constructions we have been making. The deeper meaning
of some of this is not entirely clear, and finding the right setting and development for the
theory of Hn(S, I, A) (defined below) is an open problem. It is apparent that the syzygies
of the ideal defining R[S, I] are involved.

Monoid algebras. Let R be a commutative ring and S a monoid. R[S] denotes the
semigroup ring over S with coefficients from R. This is the set of formal polynomials∑n

i=1 λiX
si , where λi ∈ R, si ∈ S and X is a formal symbol. Multiplication in R[S] is
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determined by allowing scalars to commute with Xa for all a ∈ S, the distributive law and
the rule XaXb = Xa+b. In particular, X0 = 1R[S]. In fact, R[ ] is a functor from the
category of commutative monoids to commutative R-algebras. If φ : S → T is a monoid ho-
momorphism, then R[φ] : R[S] → R[T ] is given by: R[φ]

(∑n
i=1 λiX

si

)
=

∑n
i=1 λiX

φ(si).

Cocycles, coboundaries and H2 of a monoid. Let A be an abelian group (which we write
multiplicatively), and S a monoid.

Definition. A function τ : S ×S → A is called an A-valued symmetric 2-cocycle if for all
a, b, c ∈ S:

τ(a, b) = τ(b, a), and

τ(a, b)τ(a + b, c) = τ(a, b + c)τ(b, c).

It is obvious that the product of a pair of symmetric 2-cocycles is a symmetric 2-cocycle.
Every symmetric cocycle clearly has an inverse and hence the collection of all symmetric
2-cocycles forms a group. It is denoted Z2(S, A).

Definition. If γ : S → A is any function, then

β(a, b) :=
γ(a + b)
γ(a)γ(b)

is an element of Z2(S, A). The set of all β determined in this manner by functions γ : S →
A is denoted B2(S, A). It is a subgroup of Z2(S, A).

Definition. H2(S, A) := Z2(S, A)/B2(S, A).

Twisted monoid algebras. Let R be a commutative ring with 1 and let U(R) be the group
of units of R.

Definition. A U(R)-valued symmetric 2-cocycle is called a twist ; see [AO]. If τ is a twist,
the twisted monoid algebra R[S, τ ] is the set of formal polynomials

∑n
i=1 λiX

si , where
multiplication is determined by allowing scalars to commute with Xa for all a ∈ S, the
distributive law and the rule

XaXb = τ(a, b)Xa+b.

The two defining conditions (i) and (ii) are necessary and sufficient for this rule to
determine a commutative and associative multiplication, as the reader can easily verify.
We say that R[S, τ1] and R[S, τ2] are graded equivalent if there is an R-algebra isomorphism
φ : R[S, τ1] → R[S, τ2] such that for each s ∈ S there is γ(s) ∈ U(R) with φ(Xs) = γ(s)Xs.

Lemma 1. Twisted monoid algebras R[S, τ1] and R[S, τ2] are graded equivalent if and
only if τ2/τ1 ∈ B2(S, U(R)). Thus, the elements of H2(S, U(R)) are in one-to-one corre-
spondence with graded equivalence classes.

Lemma 2. If τ ∈ Z2(S, U(R)), then R[S, τ ] is isomorphic to R[Xi : i ∈ I]/J , where J is
a proper binomial ideal, i.e., an ideal generated by polynomials of the form Xα − uXβ,
with u ∈ U(R).

The proofs of these lemmas are presented in §8.
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Example. In this example, F3 = {0, 1, 2} is the 3-element field and Z2 = {0, 1} is the
2-element group.

F3[Z2] ∼= F3[X]/(X2 − 1),

which is not a field. Let τ(0, 0) = τ(0, 1) = τ(1, 0) = 1 and let τ(1, 1) = 2. It is easy to
check that this is a twist and that F3[Z2, τ ] is isomorphic to F3[X]/(X2+1), the 9-element
field. Actually, it is not hard to write down all the functions from Z2×Z2 to U(F3), and to
determine which are in Z2(Z2, U(F3)) and B2(Z2, U(F3)). When one does this, one finds
that H2(Z2, U(F3)) ∼= Z2, so we have found all the graded equivalence classes.

Cohomology relative to an ideal. We generalize the results of the last sub-section so that
we can apply them to algebras of the form R[S]∗. Recall that in this construction, which
first appeared in the proof in §2, we “throw away” the terms corresponding to X∞. This
means that some of the information on a full cocycle on S is irrelevant. The best way of
handling this is not clear, but here is an attempt to create a framework with reasonable
generality.

Let S be a monoid and let I ⊆ S be an ideal in S, i.e., i + s ∈ I whenever i ∈ I and
s ∈ S. We define an A-valued symmetric 2-cocycle on (S, I) to be a map

τ : { (a, b) ∈ S × S | a + b 6∈ I } → A

that satisfies conditions (i) and (ii) of the previous section whenever all the values of τ
in the statements of these conditions are defined. Z2(S, I, A) denotes the group of all
symmetric 2-cocycles on (S, I), while B2(S, I, A) denotes the subgroup consisting of the
symmetric 2-cocycles of the form

β(a, b) =
γ(a + b)
γ(a)γ(b)

,

where γ : S \ I → A is any function. Finally , H2(S, I, A) denotes Z2(S, I, A)/B2(S, I, A).

From monoids-with-ideal to rings. We make the following definitions:
1) R[S, I] := R[S]/〈Xs | s ∈ I 〉
2) R[S, I, τ ] denotes R[S, I] with the twisted multiplication induced by τ ∈ Z2(S, I, A).
3) R[S, I, τ1] and R[S, I, τ2] are graded equivalent if there is an R-algebra isomorphism

φ : R[S, I, τ1] → R[S, I, τ2] such that for each s ∈ S \ I there is γ(s) ∈ U(R) with
φ(Xs) = γ(s)Xs.

Lemma 3. H2(S, I, U(R)) is in one-to-one correspondence with graded equivalence classes
of algebras R[S, I, τ ].

Lemma 4. R[S, I, τ ] is isomorphic to R[Xi : i ∈ I]/J , where J is an ideal generated by
monic monomials and polynomials of the form Xα − uXβ, with u ∈ U(R).

The proofs of these lemmas are analogous to the proofs of Lemmas 1 and 2, given below.

Example. Let S = 〈 3, 4, 5 〉 = { 0, 3, 4, 5, 6, . . .}, the submonoid of the non-negative integers
generated by 3, 4 and 5. Let I = { 11, 12, 13, . . .}. If Q denotes the additive group of
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rational numbers, then an explicit calculation shows that H2(S, I,Q) ∼= Q. Thus, if U(R)
is the multiplicative group of the reals, H2(S, I, U(R)) ∼= U(R). If τ is a (real-valued) twist
on (S, I), then R[S, I, τ ] ∼= R[X, Y, Z]/J , where

J = 〈X3 − aY Z, Y 2 − bXZ, Z2 − cX2Y, X2Z, X4, X3Y 〉,

and a = τ(3,3) τ(3,6)
τ(4,5) , b = τ(4,4)

τ(3,5) and c = τ(5,5)
τ(3,3) τ(6,4) . It is easy to show that abc is invariant

under graded isomorphism, thus the cohomology class of R[S, I, τ ] is determined by this
number.

This example obviously generalizes to other generic submonoids 〈σ1, σ2, s3〉, analogous
to the extensions of the example at the end of §6.

8. Proofs of Lemmas 1 and 2.

The following lemma and its proof are a restatement of [S], Lemma 4.1.

Lemma 0. For any monoid homomorphism φ : S → T , kerR[φ] is generated by the set

B(φ) := {Xa − Xb | φ(Xa) = φ(Xb) }.

Proof . It is clearly the case that B(φ) ⊆ ker R[φ]. Let us prove the opposite inclusion first
in the case that S = N(E). Suppose ker R[φ] \ 〈B(φ)〉 6= ∅. Fix a term order on N(I), and
pick f = λ1X

a1 + λ2X
a2 + λ`X

a` ∈ ker R[φ] \ 〈B(φ)〉 (λi 6= 0) such that the leading term
Xa1 of f is minimal among the leading terms of the elements of kerR[φ] \ 〈B(φ)〉. Now,
R[φ](f) = λ1X

φ(a1) +λ2X
φ(a2) + · · ·+λ`X

φ(a`) = 0. We may assume that φ(a1) = φ(ai) if
and only if i = 1, . . . , k (where k > 1). Then f +λ1(Xa2 −Xa1) ∈ ker R[φ]\〈B(φ)〉, yet its
leading term is less than that of f , a contradiction. For the general case, let π : N(E) → S
be a surjection. The kernel of R[φ◦π] = R[φ]◦R[π] is generated by the Xa − Xb with
φ(π(a)) = φ(π(b)). The kernel of R[φ], therefore, is generated by the images of these
elements under R[π], which is what we wanted to prove.

Proof of Lemma 1 . Suppose there is an R-algebra isomorphism

φ : R[S, τ1] → R[S, τ2]

such that for each s ∈ S there is γ(s) ∈ U(R) with φ(Xs) = γ(s)Xs. Then

φ(XaXb) = φ(τ1(a, b)Xa+b) = γ(a + b)τ1(a, b)Xa+b

and
φ(Xa)φ(Xb) = γ(a)Xaγ(b)Xb = γ(a)γ(b)τ2(a, b)Xa+b.

Because the left-hand sides are equal,

γ(a + b)τ1(a, b) = γ(a)γ(b)τ2(a, b),
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or τ2(a,b)
τ1(a,b) = γ(a+b)

γ(a)γ(b) , so τ2/τ1 ∈ B2(S, U(R)). For the converse, assume τ2(a,b)
τ1(a,b) = γ(a+b)

γ(a)γ(b)

for some γ : S → U(R). Define φ(Xs) := γ(s)Xs and extend by linearity to R[S, τ1]. Then
φ is an isomorphism of R-modules. Moreover, in the equations above the right-hand sides
are equal, and this shows that φ preserves multiplication—hence is a ring isomorphism.

Proof of Lemma 2 . Any constant function S2 → U(R) is in B2(S, U(R)). Thus every
graded equivalence class is represented by a τ such that

τ(0, 0) = 1.

In the proof, therefore, we will assume τ(0, 0) = 1.
Let si, i ∈ E be a set of generators for S, and let π : N(E) → S be the monoid

morphism induced by sending the generator εi of N(E) to si. If α ∈ N(E), we write Xα

as shorthand for
∏

i∈E Xαi
i ∈ R[ Xi | i ∈ E ]. Let φ : R[ Xi | i ∈ E ] → R[S, τ ] be the

homomorphism induced by sending Xα to Xπ(α).
Now, let T : N(E) → U(R) be defined as follows: First, set T0 = 1 and set Tεi = 1

for each generator εi. This defines T on all elements of degree 0 and 1 in N(E) (where the
degree of α is

∑
i∈E αi). Assuming T has been defined on elements of degree less than k,

and α + β has degree k, we set

Tα+β := τ(π(α), π(β))TαTβ .

That this is well-defined is guaranteed by the identities that τ is required to satisfy. In
detail, note first that the second identity for τ gives directly that T(α+β)+γ = Tα+(β+γ),
whenever T(α+β), Tγ , Tα and T(β+γ) are defined. Now if γ = α + β = α′ + β′, then let
γ1 = α∧α′, γ2 = 0∨ (α−α′) γ3 = 0∨ (α′−α) and γ4 = β∧β′. Then γ = γ1 +γ2 +γ3 +γ4,
α = γ1 + γ2 and α′ = γ1 + γ3. Then Tα+β = Tγ1+(γ2+γ3+γ4) = Tγ1+(γ3+γ2+γ4) = Tα′+β′ .

Now, note that
φ(Xα) = TαXπ(α).

Let J ⊆ R[ Xi | i ∈ E ] be the ideal generated by {T−1
α Xα − T−1

β Xβ | π(α) = π(β) }. We
claim that J = ker φ. If π(α) = π(β), then φ(T−1

α Xα − T−1
β Xβ) = Xπ(α) − Xπ(β) = 0, so

J ⊆ ker φ. On the other hand, suppose kerφ \ J 6= ∅. Fix a term order on N(E), and pick
f = λ1X

α1+λ2X
α2+· · ·+λ`X

α` ∈ ker φ\J (λi 6= 0) such that the leading term Xα1 of f is
minimal among the leading terms of the elements of ker φ\J . Since f ∈ ker φ, we must have
π(α1) = π(αi) for some i. We may assume that π(α1) = π(αi) if and only if i = 1, . . . , k
(where k > 1). Now, φ(f) = λ1Tα1X

π(α1) + λ2Tα2X
π(α2) + · · · + λ`Tα`

Xπ(α`) = 0. Then
f + λ1(Tα1T

−1
α2

Xα2 − Xα1) ∈ ker φ \ J , yet its leading term is less than that of f , a
contradiction.
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