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Abstract. We construct some non-essential H-closed epireflections of W, the
category of archimedean ℓ-groups with weak order unit, that are not comparable
with any known H-closed epireflections of W other than the divisible hull and
the epicompletion. In preparation, we show that the free objects in any H-
closed epireflective subcategory of W must be closed under composition (see
section 2 for a precise definition), and that any epic extension of a finite- or
countably-generated free W-object that is closed under composition is actually
a free object in some H-closed epireflective subcategory of W. We apply these
results to certain ℓ-groups of almost-piecewise-linear Baire functions on R to
obtain the examples. By definition, a function f : R → R is almost-piecewise-

linear if there is a finite point set S ⊂ R such that f is piecewise-linear on the
complement of any neighborhood of S.
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0. Introduction

Since the 1970s, many mathematicians have been investigating and classifying epireflective subcat-
egories of W, the category of archimedean ℓ-groups with weak order unit (see [H1], [BH2], [BH3],
[MV]) and related categories (see [MS]). Examples in W include: divisible W-objects, archimedean
vector-lattices (with weak order unit), archimedean f -rings (see [HR]), CCC-rings (see [H1]), and
epicomplete archimedean f -rings (see [MV] and [BH2]), while examples in the category of reduced
partially-ordered rings include: f -rings, real-closed rings and epicomplete abstract semialgebraic
function rings (see [MS]). The work in hand presents some new examples that illuminate the struc-
ture of the lattice of H-closed monoreflections of W. In particular, we show that there are H-closed
monoreflections of W that are properly stronger than the divisible hull, yet are not rings. Our work
also uncovers some elementary—but interesting—facts concerning the algebra of function compo-
sition. In general, we know little about the structure of the ℓ-group we obtain if we adjoin an
arbitrary almost-piecewise-linear function (defined in the abstract) to the ℓ-group of all piecewise-
linear functions on R and then close under composition and the ℓ-group operations. Nevertheless,
in this paper we succeed in identifying some classes of almost-piecewise-linear functions for which
this operation yields an ℓ-group whose structure we can fully analyze.

Acknowledgement . I would like to thank A. W. Hager for asking and discussing the questions that
led to this work, and for his support and encouragement. Some of the results contained in this
paper were announced at the BLAST Conference at New Mexico State University in August 2009.
I thank the referee for suggesting some simplifications.
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1. Preliminaries

In this section, we present notation and background information. The subsection on the Yosida
Theorem reformulates and systematizes some basic ideas that were first presented in [HM].

Reflective subcategories. Let C be a category and let R be a full, isomorphism-closed subcategory.
Because in this paper R is always assumed to be full, we do not distinguish between the class of
objects of R and the category itself. We say R is reflective in C if for every C-object A, there
is an R-object rA and a morphism ρA : A → rA with the following universal mapping property:
for any morphism β from A to an R-object B, there is a unique morphism β : rA → B such that
β = βρA. If for all A in C the reflection morphism ρA is an epimorphism, i.e., right-cancellable,
we say that R is an epireflection. The concept of a monoreflection is defined analogously. It is
well-known that every monoreflection is an epireflection; see [HS]. If the objects of C are sets
(with some additional structure), we say R is H-closed if B belongs to R whenever there is a
surjective morphism f : A → B with A in R. For a systematic exposition of the general theory of
epireflections, see [HS].

Unital archimedean ℓ-groups. W denotes the category of archimedean ℓ-groups with weak order
unit and unit-preserving ℓ-homomorphisms. In W, monomorphisms are injective but epimorphisms
need not be surjective; see [BH1]. Every W-object A is torsion-free, and hence has a divisible hull
Q ⊗ A. For any set X, F (X) denotes the sub-ℓ-group of the ℓ-group of all functions from RX to
R that is generated by the coordinate projections and the constant function 1. It is known—see
[H1]—that F (X), with the constant function 1 as weak unit, is the free W-object on X. In other
words, any set map from X to a W-object has a unique extension to a W-morphism from F (X)
to that W-object.

The Yosida Representation Theorem states that every W-object A is isomorphic to an ℓ-group
of almost-everywhere-defined continuous R-valued functions on a compact Hausdorff space Y (A),
and every W-morphism φ : A → B is induced by a continuous map Y (φ) : Y (B) → Y (A). The
localic version of the Yosida Theorem (see [HM]) states that every A is isomorphic to an ℓ-group

Â of continuous R-valued functions on a regular Lindelöf locale Y(A), and every W-morphism
φ : A → B is induced by a continuous map Y(φ) : Y(B) → Y(A) such that

φ̂(a) = â ◦ Y(φ). (1.1)

In the cases of interest in the present paper, the Yosida locales have dense point sets and the
locale morphisms are completely determined by their behavior on these sets. Specifically, let n be
a positive integer or ω, and let Yn denote Y

(
F (n)

)
, the Yosida locale of the free W-object on n

generators. Then Yn is homeomorphic to Rn, where the latter has the usual (Tychonoff) topology;
indeed, if xi ∈ F (n) is the ith generator, then

(x̂1, x̂2, . . . , x̂n) : Yn → Rn

is a homeomorphism; see [HM]. (This includes the case n = ω, where we should write (x̂1, x̂2, . . .).)
Since F (n) is by definition an ℓ-group of functions on Rn, the distinction between F (n) and its

representation F̂ (n) is usually inconsequential, but we will use the hat when the context makes it
natural to do so.

Let µ be a monoreflection of W and, maintaining the assumption that n ∈ {1, 2, . . . , ω}, let
Yn

µ denote the Yosida locale of µF (n). The reflection morphism µF (n) induces a locale morphism
fn

µ : Yn
µ → Yn. As discussed in [HM], the point set ptYn

µ ⊆ Yn
µ is dense, and fn

µ maps ptYn
µ

bijectively onto ptYn = Rn. Thus, we may identify ptYn
µ with Rn. Note that the topology that
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Rn inherits from Yn
µ may be stronger than the Tychonoff. In fact, µ is essential (see [H1]) if and

only if Y(µA) is a homeomorphism for all A in W.

The H-closed epireflections of W have a very nice description, which we now present; more detail
may be found in [H2], [HM] and the references of these papers. Every W object is the image of
some F (X) under a surjective W-morphism, so each H-closed epireflection of W is completely
determined by its action on the free objects F (X). Hager has shown that it suffices to consider
countably generated free objects; see [H1]; the essential argument for this is also presented in
Lemma 4.2 of [HM]. Because each F (n) is a retract of F (ω), any H-closed epireflection ρ of W is
completely determined by ρ(F (ω)).

Another useful description of the H-closed epireflections of W was presented by Hager in [H2].
Suppose e : A → A′ is a morphism in W. A W-object B is said to be e-injective if it satisfies
the following condition: for any morphism g : A → B, there is a morphism g′ : A′ → B such
that g = g′e. If E is a class of morphisms, then B is said to be E-injective—or to belong to
the injectivity class Inj(E)—if it is injective for each morphism in E. The main theorem in [H2]
applies to W, yielding the following:

Proposition. A class R of W-objects forms an H-closed epireflective subcategory if and only if
R = Inj(E) for some class E of W epimorphisms, each with domain some F (n), n a positive
integer or ω.

“Arity”. Assume that (R, ρ) is an H-closed epireflection. We say that R has arity n, (with n
finite or ω) if: R = Inj(E) for some E in which all the domains are free of rank n or less and
R 6= Inj(E′) if all the domains in E′ have rank strictly less that n. In principle, R could fail to
have finite arity, and yet not have arity ω, in which case, we say the arity is unbounded but not ω.
Since F (m) is a retract of F (n) when m < n, it follows that if R has arity n, then R = Inj(ρn),
where ρn : F (n) → ρF (n) is the reflection morphism.

2. Injectivity classes and closure under composition

Throughout this section, we assume n ∈ {1, 2, . . . , ω}. The strongest monoreflection of W (that
is to say, the monoreflective subcategory with smallest object class) consists of the epiclosed W-
objects. It is known that the epireflection ǫF (n) of F (n) is isomorphic to the ℓ-group B(Rn) of
Baire functions on Rn. This follows from a theorem of Ball, Comfort, Garcia-Ferreira, Hager, van
Mill and Robertson (see [B]) as described in [HM]. The discussion in section 1 of the present paper
shows how the Yosida representation makes this isomorphism explicit.

The reflection µF (n) of F (n) under any monoreflection µ is isomorphic to a sub-ℓ-group of
B(Rn); this follows from Lemma 1.2 in [HM] or 8.1 of [MS]. Suppose A is an epic extension of
F (n) within B(Rn). We will show that there is an epireflection ρ such that A = ρF (n) if and only
if A has the property in the following definition:

Definition. A set of functions A ⊆ RRI

is said to be closed under composition if for any f ∈ A
and any indexed set (gi|i ∈ I) of elements of A, the composition f(. . . , gi, . . .) belongs to A.

Lemma 1. If µ is a monoreflection in W, then µ̂F (n) ⊆ B(Rn) is closed under composition.

Proof. Suppose a, b1, b2, . . . ∈ µF (n). In this proof, we let â, b̂i, which properly are real-valued
functions on Yn

µ , stand for elements of B(Rn) by restricting their domains to ptYn
µ = Rn. Let

β : F (n) → µF (n) be the W-morphism determined by sending the generator xi of F (n) to

bi. Then by (1.1), b̂i = x̂i ◦ Y(β). Since the xi are the coordinate projections on Rn, we have

Y(β) = (. . . , b̂i, . . .). Now let β : µF (n) → µF (n) be the canonical extension. Then

â(. . . , b̂i, . . .) = â ◦ Y(β) = β̂(a) ∈ µ̂F (n). /////
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Lemma 2. Suppose A is an epic extension of F (n) within B(Rn). Let e : F (n) ⊆ A be the
containment. If A is closed under composition, then A is e-injective, and A is the reflection of
F (n) in the epireflection Inj(e).

Proof. Let g : F (n) → A be any W-morphism, and set bi := g(xi) ∈ A. Since A is closed under
composition, if a ∈ A, then a(. . . , bi, . . .) ∈ A. Let g : A → A be defined by g(a) := a(. . . , bi, . . .).
Because composition respects the operations of W (e.g., (a + a′) ◦ b = (a ◦ b) + (a′ ◦ b)), g is
a W-morphism, and ge(xi) = xi(. . . , bi, . . .) = bi, so ge = g. Thus, A is e-injective. Let ρn :
F (n) → ρF (n) be the reflection morphism for Inj(e). Since A ∈ Inj(e), there is e : ρF (n) → A
such that eρn = e, and since ρF (n) ∈ Inj(e), there is ρn : A → ρF (n) such that ρnρn = e. Now,
ρn ◦ e = idρF (n) by the universal mapping property of ρF (n), and e ◦ ρn = idA because e is an
epimorphism. Thus ρF (n) ∼= A. /////

The arity of the epireflection Inj(e) appearing in the lemma is at most n, and it may be strictly
less than n. The hypotheses of the lemma assure that Inj(e) is a monoreflective subcategory.
To prove this, it suffices to show that every W -object is contained in an Inj(e)-object. Every
W-object is contained in its epicompletion. We will show that every epicomplete W -object is
e-injective. Suppose that E is epicomplete and g : F (n) → E is any W -morphism. Then g factors
as g = g ǫ

F(n)
, where ǫ

F(n)
: F (n) → ǫF (n) is the epicompletion morphism and g : ǫF (n) → E.

As noted earlier, ǫF (n) = B(Rn). Let g′ be the restriction of g to A. This shows that E is
e-injective. (I thank A. W. Hager for pointing this argument out to me.) It is possible to find
injective epimorphisms f : F (n) → A, where A is not isomorphic to a sub-ℓ-group of B(Rn). We
give another example at the end of this paper. For such A, Inj(f) is not a monoreflection.

3. Piecewise-linear and almost-piecewise-linear functions

We say that a function f : R → R is piecewise-Q-linear if there are finitely many rational numbers
q1 < q2 < . . . < qs and mi, bi ∈ Q, i = 0, . . . , s such that

f(x) =





m0 x + b0, if x ∈ (−∞, q1];
mi x + bi, if x ∈ [qi, qi+1] for i = 1, . . . s − 1;
ms x + bs, if x ∈ [qs,∞).

Note that a piecewise-Q-linear function is continuous. (The shared endpoints of the intervals in
the definition guarantee this.) The set of piecewise-Q-linear functions from R to R is the divisible
hull Q ⊗ F (1) of F (1). If X ⊆ R and f : X → R, we say that f is piecewise-Q-linear if f is the
restriction to X of some piecewise-Q-linear function on R.

In the present section, we will construct an ℓ-group M ⊆ B(R) that is closed under composition
and contains discontinuous functions that are almost-piecewise-Q-linear , in the sense that for each
f ∈ M , there is a finite set S of rational points such that f is piecewise-Q-linear on the complement
of any neighborhood of S. Essentially, our strategy is to add a single function, m (which we
will define momentarily), to Q ⊗ F (1) and then close under the Q-vector-lattice operations and
composition. The function m is chosen to have properties that assure that this closure has a
manageable description. For each q ∈ Q, M will also contain functions f and g such that

lim
x→q−

f(x) = +∞ and lim
x→q+

g(x) = +∞.

As we explain more fully below, this implies that M is a W-epic extension of F (1). Thus, it
produces a 1-ary H-closed epireflection of W.

Definition. Let m : R → R be the function whose graph consists of the sets:
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• { (x, 2) | x ≥ 1 },
• the line segments joining ( 1

n
, 2n) and ( 1

n+1
, 2n+1) for n = 1, 2, 3, . . ., and

• { (x, 0) | x ≤ 0 }.

For any constant k > 0, let mk(x) := m(k x).

Remark. We have the following formula for m:

m(x) =

{
2, if x ≥ 1;
−n(n + 1)2n x + (n + 2)2n, if 1

n+1 ≤ x ≤ 1
n ;

0, if x ≤ 0.

Remark. Note that
lim

x→0+
mk(x) = +∞.

The function mk is piecewise-Q-linear on [q,∞) for any q > 0, but it is not piecewise-Q-linear on
any interval (0, q], q > 0 because it has “infinitely many pieces.”

Lemma 1. For all x ∈ (0, 1/k),

2
1

k x ≤ mk(x) ≤ 2 · 2
1

k x .

Proof. It is enough to prove this for k = 1, since the general result follows from this case by
substituting k x for x. Now, for x ∈ (0, 1)

2
1
x ≤ m(x)

because the graph of m over (0, 1) consists of secants to the graph of the convex function f(x) = 2
1
x .

The inequality
m(x) ≤ 2 · 2

1
x

can be seen as follows. Assume 1
n+1 ≤ x ≤ 1

n . Then n + 1 ≥ 1
x ≥ n, so 1 + 1

x ≥ n + 1, so

21+ 1
x ≥ 2n+1 ≥ m(x). /////

Lemma 2. Suppose k, ℓ ∈ R, k > ℓ > 0. Then, for any N ∈ N, there is q > 0 such that

mℓ(x) > N mk(x), for all x ∈ (0, q].

Proof. Pick s ∈ N such that 2s−1 > N . Then, if x > 0,

2
1

ℓ x ≥ 2s · 2
1

k x ⇔
k − ℓ

k ℓ s
≥ x.

Thus, if 0 < x < k−ℓ
k ℓ s , then by Lemma 1,

mℓ(x) ≥ 2
1

ℓ x ≥ 2s · 2
1

k x > N · 2 · 2
1

k x ≥ N mk(x). /////

Corollary. The functions x, 1 and mk, 0 < k ∈ Q, are linearly independent over R.

Lemma 3. Suppose f : (0,∞) → R is of the form

f(x) = c0 x + c1 + c2 mk2
(x) + · · · + cn mkn

(x),
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where ci, ki ∈ Q and k2 > k3 > · · · > kn > 0 and cn > 0. Then there is q > 0 such that f(x) > 0
for all x ∈ (0, q].

Proof. This is immediate from Lemma 2, which says that the order of the pole of mkn
at 0+

exceeds the orders of the poles of all the other terms of f . /////

Let G0+ be the Q-vector-space of functions on R spanned by the functions x, 1 and mk,
0 < k ∈ Q. Let M0+ be the set of all functions f : R → R for which there is a rational number
0 < q such that:
• f = g on (0, q] for some g ∈ G0+ , and
• f is piecewise-Q-linear on (−∞, 0] and on [q,∞).

Remarks:

i) M0+ includes all the piecewise-Q-linear functions on R.
ii) If f ∈ M0+ , then outside every neighborhood of 0, f is piecewise-Q-linear.

iii) f is continuous from the left at 0 but limx→0+ f(x) may be infinite or may be finite and
different from f(0).

iv) If limx→0+ f(x) is finite, then f is piecewise-Q-linear on [0,∞). (Proof. Lemma 2 implies
that the only elements of G0+ with finite limit from the right at 0 are the linear functions
f(x) = ax + b.)

Lemma 4. M0+ is a Q-vector-lattice under the pointwise operations. It is generated as a Q-
vector-lattice by 1, x and the functions mk, 0 < k ∈ Q.

Proof. Clearly, M0+ is a Q-vector-space, so for the first assertion it suffices to prove that if f ∈ M0+ ,
then f ∨0 ∈ M0+ . But this follows from Lemma 3 and Remarks i) and ii) just above. Now suppose
f ∈ M0+ . We seek to show that f is in the Q-vector-lattice generated by 1, x and the functions
mk, 0 < k ∈ Q. It suffices to treat the case where f = 0 on (−∞, 0], since we may add or subtract
from f a piecewise-linear function that agrees with f on (−∞, 0] without affecting membership in
M . If limx→0+ f(x) = 0, then f is piecewise-Q-linear, so it remains to consider the case where
there is a discontinuity at 0, and since we can multiply by −1, it suffices to treat the following
cases:

• Case 1. 0 < limx→0+ f(x) = a ∈ Q. Then f is piecewise-linear on (0,∞). Let h be the
piecewise-Q-linear function that coincides with f on (0,∞) and is equal to the constant a
on (−∞, 0]. Pick 0 < b ∈ Q so large that m(x) ∨ b x > f(x) on (0,∞). Then f(x) =
(m(x) ∨ bx) ∧ h(x).

• Case 2. limx→0+ f(x) = +∞. By Case 1, we can assume f = g on (0, q], where g = c2mk2
+

· · ·+ cnmkn
∈ G0+ . Note that f(x) = g(x) = 0 for all x ∈ (−∞, 0]. Pick 0 < b ∈ Q so large

that g(x) ∨ b x ≥ f(x) for all x > 0. Let q0 be the smallest positive solution to b x = f(x).
Let h be the piecewise-Q-linear function that is identically 0 on (−∞, q0] and that is equal to
f(x) − b x for x > q0. Then f(x) = (g(x) ∨ b x) + h(x) for all x ∈ R. /////

Definition. For any k, q ∈ Q, k 6= 0, let

mk,q(x) := m(k(x− q)).

Let M be the sub-Q-vector-lattice of RR generated by 1, x and the functions mk,q(x).

Note that mk,q is the result of applying m after an affine transformation of R. We will show in
Lemma 5 that we can recognize the elements of M directly. Let Mq+ := { g(x − q) | g ∈ M0+ }
and Mq− := { g(q − x) | g ∈ M0+ }. Note that Mq+ is the translation of M0+ by q, and Mq− is
the reflection of Mq+ in the line x = q. By Lemma 4, Mq+ is generated as a Q-vector-lattice by
the functions 1, (x − q), and mk,q, 0 < k ∈ Q, and Mq− is generated as a Q-vector-lattice by the
functions 1, (q − x), and mk,q, 0 > k ∈ Q.
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Lemma 5. f ∈ M ⇔ there is a finite set q1 < q2 < · · · < qs of rational numbers such that on each
interval [qi, qi+1], i = 1, . . . s− 1, f coincides with an element of Mq+

i

or of Mq−

i+1
and on (−∞, q1]

([qs,+∞)) f coincides with an element of Mq−

1
(Mq+

s
).

Proof. The direction ⇒ follows from the fact that each element of M is defined using only finitely
many of the functions mk,q. The other direction follows from the fact that we can represent a
function of the kind described as a sum of elements of Mq+ and Mq− . For each i = 1, . . . , s− 1, we
choose q′i, q′′i such that qi < q′i < q′′i < qi+1 and we choose an element of Mq+

i

that agrees with f

on (qi, q
′

i) and is 0 on (−∞, qi] and on [q′i,∞); similarly, we choose an element of Mq−

i

that agrees

with f on (q′′i , qi+1) and is 0 on (−∞, q′′i ] and on [qi+1,∞). Also, to the left of q1 and to the right
of qs, we choose functions in Mq−

1
and Mq+

s
that agree with f on (−∞, q1) and (qs,∞) and are 0

elsewhere. If we subtract all these functions from f , we get a piecewise-linear function, showing
that f is indeed in M . /////

Lemma 6. If f, g ∈ M , then f ◦ g ∈ M .

Proof. Since M is a Q-vector-lattice, it suffices to show that if g ∈ M , then mk,q ◦ g ∈ M for all
functions mk,q. We can further reduce our task to showing that m◦g ∈ M , since M is closed under
composition on the right or left by affine transformations of R. Now, the zero-set of g consists of
finitely many points and rational intervals (which may be open, closed, half-open or half-infinite
in the standard topology on R). Let {wi | i = 1, . . . s } be the set of all rational numbers such that

g(wi) = 0, lim
x→w−

i

g(x) = 0 and g(x) > 0 on some interval (vi, wi).

Similarly, let { yi | i = 1, . . . s } be the set of all rational numbers such that

g(yi) = 0, lim
x→y+

i

g(x) = 0 and g(x) > 0 on some interval (yi, zi).

(An isolated point in the zero set of g may give rise to a wi and/or a yj .) We may choose the vi

and zi so that g is linear on [vi, wi] and on [yi, zi]. On the complement of the intervals (vi, wi) and
(yi, zi), m ◦ g is piecewise-Q-linear, while on each interval [vi, wi] or [yi, zi], m ◦ g = mk,q for some
rationals k and q. /////

Summarizing the lemmas, we have the following theorem:

Theorem. M is a Q-vector-lattice of almost-piecewise-Q-linear functions on R that is closed under
composition and that lies between Q⊗F (1) (the Q-vector-lattice of all piecewise-Q-linear functions
on R) and B(R), the ℓ-group of all real-valued Baire functions on R. The elements of M have at
most finitely many discontinuities, which occur only at rational numbers. Every rational number
is a point of discontinuity for some element of M . The elements of M have left and right limits
(possibly infinite) at all points of discontinuity, and for each rational number q there is an element
M that tends to infinity when approaching q from the left and an element M that tends to infinity
when approaching q from the right.
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4. F (1) ⊆ M is epic

In order to show that M is an epic extension of F (1), we will use the criterion that Ball and Hager
proved in [BH1]. In order to apply it, we will need to know the Yosida spaces of F (1) and of M .
To determine these spaces, we appeal to the following lemma, which is also described in [BH].

Lemma 1. Let X be a compact Hausdorff space, let D(X) denote the set of all continuous
R ∪ {±∞}-valued functions on X that are finite on a dense set, and let A be a sub-W-object of
D(X) that contains 1 as weak unit and separates points. Then Y (A) ∼= X. /////

From the lemma, it is immediate that Y (F (1)) = Y (Q⊗ F (1)) = R∪ {±∞}. We simply note
that if f is piecewise-linear on R, then there is a positive constant K such that f is affine linear
on (−∞,−K) and on (K,∞). Thus the limits limx→−∞ f(x) and limx→+∞ f(x) both exist as
elements of R∪ {±∞}. Therefore, we can extend f to the compact domain R∪ {±∞} by defining
the values at the endpoints according to the limits, and we have the conditions of the lemma.
Thus, Y (F (1)) ∼= R ∪ {±∞}.

To describe the Yosida space of M requires more work. The points of R at which elements of
M have discontinuities have multiple pre-images in Y (M). However, all functions in M have right
and left limits at all points of R, and this suggests that there ought to be at most three pre-images.
We confirm this shortly, but first we introduce a general construction that always yields a compact
Hausdorff space.

Let X be an arbitrary subset of R. For each point x ∈ X we add to R two additional points,
denoted x− and x+. Let X− := {x− | x ∈ X }, X+ := {x+ | x ∈ X }, and let

RX := R ∪ X− ∪ X+ ∪ {−∞,+∞}.

We order RX by making −∞ the smallest element, +∞ the largest, giving the reals the usual order
and, for each x ∈ X, placing x− less than x but larger than all y ∈ R—and if they exist, y− and
y+—if y < x. Similarly, x+ is greater than x but less than y, y− and y+ if x < y ∈ R. We give
RX the weakest topology in which the following sets are open:

i) singletons {x}, for all x ∈ X;
ii) intervals of the form (a, b) := { z ∈ RX | a < z < b }, with a, b ∈ RX .

iii) intervals of the form (a,+∞] and of the form [−∞, a), with a ∈ RX .

Note that if x ∈ X, intervals of the form (a, x−] = (a, x) form an open neighorbood base at x−.
Similarly, intervals of the form [x+, b) = (x, b) form an open neighorbood base at x+.

Lemma 2. For any X ⊆ R, RX is a compact Hausdorff space.

Proof. The referee suggests the following argument: since a chain is compact in its interval topology
if and only if it is complete, and since RX is evidently complete, it is compact. The lemma can
also be proved by imitating the usual proof of the compactness of [0, 1], but there are numerous
details and special cases to attend to, and it is laborious. /////

Proposition 1. Y (M) = RQ.

Proof. It suffices to show that M is is isomorphic to a point-separating sub-ℓ-group of D(RQ), with
weak unit 1. By construction, every element of f ∈ M extends to a R ∪ {±∞}-valued function on
RQ by defining f(q−) to be the limit of f(x) as x approached q from below and defining f(q+) to
be the limit of f(x) as x approached q from above. /////

Proposition 2. F (1) ⊆ M is epic in W.

Proof. This is immediate from the criterion for W-epimorphisms presented in [BH1]. /////
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5. Final Remarks.

The same kind of construction that we have used to make M enables us to make numerous variants.
For example, we can construct a W-epic extension of F (1) that is closed under composition and
is not a Q-vector-lattice by restricting the mk,q to be of the form k ∈ Z and kq ∈ Z. The function
m itself is actually piecewise Z-linear on the complement of any neighborhood of the origin. If
we adjoin m to F (1) and close under the ℓ-group operations and composition, we get an ℓ-group
of almost-piecewise-Z-linear functions, which is contained in M . Every rational point is a point
of discontinuity for some element of this ℓ-group, so in terms of Yosida spaces, we don’t get an
example that is different from M . On the other hand, we can make examples that are larger than
M by adjoining m to k⊗F (1), where k is a subfield of R, and then taking the least k-vector-lattice
that contains M and is closed under composition. In this case, we generate functions that have
discontinuities at points of k. In particular, if k = R, we get have discontinuities at all points of R.

Other modifications of the basic construction are possible by using functions that have yet
higher-order poles at 0 than 21/x. It appears that if these are chosen with care, ℓ-groups with
similar properties to M may be constructed. For example, in place of m (or in addition to m), use a

function whose graph contains the line segments joining ( 1
n
, 22n

) and ( 1
n+1

, 22n+1

) for n = 1, 2, 3, . . ..
We close by providing the example promised at the end of Section 2. Example. Let J be

the ℓ-ideal of M consisting of the functions that are non-zero at only finitely many points. Then
F (1) ⊆ M/J . The injectivity class of this embedding is obviously not a monoreflection, since the
associated reflection morphism ρM : M → ρM is not injective.
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