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Abstract. This paper gives an account of the contributions of Melvin Henriksen
and John Isbell to the abstract theory of f -rings and formally real f -rings, with
particular attention to the manner in which their work was framed by universal
algebra. I describe the origins of the Pierce-Birkhoff Conjecture and present some
other unsolved problems suggested by their work.
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A conjecture or hypothesis may become as significant in a mathematician’s legacy as a
finished piece of work, as the manner in which we refer to great mathematical questions
by the names of great mathematicians attests. In his work on f -rings, Mel Henriksen
contributed to the base of existing knowledge and also raised questions that are driving
some of the most challenging and intriguing research I know.

An f -ring—the name is short for “function ring”—is a subring of a product of totally-
ordered rings that is also closed under the natural lattice operations. These objects were
first named and studied systematically by Birkhoff and Pierce in their paper [BP]. In [HI],
Henriksen and Isbell picked up where Birkhoff and Pierce left off, proving several deep
results about the equational theory of f -rings and adding many important results on the
structure of f -rings, as well. In the present essay, I will concentrate on the former theme
and the unanswered questions it leads to. For a presentation of the structure theory, one
may consult [BKW], section 9.4.

The notorious problem now known as the “Pierce-Birkhoff Conjecture” was first for-
mulated by Henriksen and Isbell during their collaboration on [HI]. I heard the story
directly from Mel, who with characteristic animation and good humor told how his nu-
merous “proofs” were shot down, one after another, by Isbell. It was like listening to a
fisherman talk of an encounter with a legendary fish, too big and too sly to be caught. The
conjecture is that every continuous piecewise polynomial function on Rn can be expressed
as a finite lattice-combination of polynomials, i.e., as a sup of infs of finitely many poly-
nomials. Here, of course, we are concerned with piecewise polynomials that are defined by
giving a finite cover of Rn by closed semialgebraic sets and and stipulating a polynomial
on each. Functions that are piecewise polynomial in a more general sense, e.g., requiring
infinitely many pieces, are not generally finite lattice-combinations of polynomials. The
conjecture was publicized in the early 1980s by Isbell, who believed that the methods of
real-algebraic geometry then being introduced might be capable of capturing it. Using
Thom’s Lemma, Mahé reeled in the n = 2 case soon after; see [ML1]. After this the
conjecture became widely known. Since Mahé’s work, some new techniques have been
explored but there has been no definitive progress on the cases with n ≥ 3.
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Many people ask why the names of Birkhoff and Pierce appear in reverse alphabetical
order in the name of the conjecture. My guess is that it just sounds better to have the one-
syllable name first. As a matter of fact, it is arguable whether Birkhoff and Pierce should
really be regarded as the authors of this problem. The likely inspiration is an unsolved
problem stated at the end of [BP], but a careful examination suggests that Birkhoff and
Pierce may actually have meant to ask something different. To be fair (and alphabetical),
perhaps the name should be the “Birkhoff-Henriksen-Isbell-Pierce Conjecture,” but I don’t
expect this to catch on. Whatever it’s called, it seems that everyone who has taken it up
has experienced it in much the same way as Mel did, believing at first that all the pieces
of a proof are at hand only to discover that the crux of the problem has not been touched,
and finally marveling at the mysterious depths.

Acknowledgement . I would like to thank the referee for insisting on clarity on a number
of points and for providing suggestions that were useful to this end.
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1. Universal algebra. I shall review some basic ideas of universal algebra in order to
provide a conceptual and terminological frame of reference. Readers may skim the present
section and refer back to it as needed, in case questions about meanings should arise. An
algebra, in the sense of universal algebra, is a set equipped with distinguished elements
and operations. A collection of symbols acting as names for these elements and operations
is called the signature of the algebra. For example, a group (if written additively) is an
algebra with signature (0,−, +), with the understanding that 0 names a fixed element of
the algebra, − names a unary operation on it, and + names a binary operation on it. A
ring with identity may be given signature (0,−, +, ·). If a signature Ω is given then an
algebra with that signature is called an Ω-algebra. Though when speaking of a particular
Ω-algebra I may identify the symbols in Ω with the corresponding elements or operations
of the algebra, in general one distinguishes symbols from the elements or operations they
name, so that one may speak of corresponding elements or operations in different algebras,
and thus clarify notions like homomorphism and isomorphism. For a rigorous discussion
of the concept of ‘signature’ (under different names), the reader may refer to the definition
of “language (or type) of algebras in [BS], page 23, or to the definition of “operator domain

. . . Ω” and “Ω-algebra” in [C], page 48.

Not every (0,−, +)-algebra is a group. A group satisfies the additional requirements
that + be associative, that 0 be a left and right identity for + and that −x be a left and
right inverse for x. These requirements can be stated as equational laws, i.e., as universally
quantified sentences in which the quantifier-free part is an equation in the language with
the constant and function symbols from the signature. Equational laws are also called
identities.

Fix a signature Ω, and let X be an arbitrary class of Ω-algebras. It is easy to see that
any equational law satisfied by every element of X is also satisfied by the subalgebras,
products and homomorphic images that may be formed from the algebras in X . The
smallest class containing X and closed under these formations can be built in three steps:
first take all products of elements of X , then adjoin all sub-Ω-algebras of these and finally
adjoin all homomorphic images of these. This class is denoted HSP(X). A famous theorem
of Birkhoff asserts the converse: if X = HSP(X), then X is defined by a set of equational
laws (or, as one says, X is an equational class). We write HSP(X, Ω) if it is necessary to
make the signature clear. We write HSP(A) if X = {A}, in which case we say that A is
a generator of the class.

Universal algebra concerns the equational laws that may be satisfied by the algebras
of a given signature, the implications among them and the classes of algebras defined by
them. For example, when A is an Ω-algebra one may want to know whether finitely many
equational laws define HSP(A); or, if an equational class X has been given, one may seek
an Ω-algebra B of some particularly simple kind such that X = HSP(B).

2. ℓ-groups, ℓ-rings and f-rings. An abelian ℓ-group is a (0,−, +,∨)-algebra that is
an abelian group with respect to 0, − and + and in which ∨ is a binary operation that is
associative, commutative and idempotent and that satisfies the following distributive law:

∀x, y, z : x + (y ∨ z) = (x + y) ∨ (x + z).
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Any totally-ordered group may be viewed as an ℓ-group by defining x∨y to be the maximum
of x and y. In an ℓ-group, one defines x∧y := −(−x∨−y), x+ := x∨0 and x− := (−x)∨0.
If x is an element of an ℓ-group, we call it positive if x∧0 = 0 and we call it strictly positive

if it is positive and non-zero.
It is a fact that every abelian ℓ-group is a sub-ℓ-group of a product of totally-ordered

groups; see [BKW], 4.2. It follows that under ∨ and ∧ any abelian ℓ-group is is a distributive
lattice. It is a consequence of Theorem 3.10 of [HI] that the class of all abelian ℓ -groups is
HSP(Z, 0,−, +,∨); this result is also discussed in the Appendix of [BKW], where further
references are given.

An ℓ-ring is a (0,−, +, ·,∨)-algebra that: i) is a ring with respect to 0, −, + and ·,
ii) is an abelian ℓ-group with respect to 0, −, + and ∨ and iii) satisfies:

∀x, y : (x+y+) ∧ 0 = 0.

This law assures that any product of positive elements is positive. An f -ring is an ℓ-ring
that satisfies the stronger laws:

∀x, y : (x+y+) ∧ (x−) = 0 and ∀x, y : (y+x+) ∧ (x−) = 0.

Any totally-ordered ℓ-ring is an f -ring. Birkhoff and Pierce showed that any f -ring is a
sub-f -ring of a product of totally-ordered rings; this is one of the main results of [BP].
Because of this, any equational class of f -rings is completely determined by the totally-
ordered rings that are in it.

When ℓ-rings and f -rings were first investigated, they were not assumed to have
multiplicative identity. We will stick to tradition. When used without qualification, the
word “ring” refers to a possibly non-commutative ring, possibly without identity. The
equational class of rings with identity differs from the class of rings in having a signature
that includes the constant 1 and in satisfying the equational laws stating that 1 is a left
and right multiplicative identity. Similarly, f -rings with identity differ from f -rings in the
presence or absence of 1 in the signature together with the laws of identity in the defining
equations. In the following, FR will denote the equational category of f -rings and FR1 will
denote the equational category of f -rings-with-identity. FR1 is a subcategory of FR, but it
is not a full subcategory. For example, if A is an FR1-object, then a 7→ (a, 0) : A → A×A

is an FR-morphism but not an FR1-morphism.

3. Equational classes of f-rings. We call an element of the free ring in variables
x1, x2, . . . a polynomial . In general, we don’t assume that the variables commute. Henrik-
sen and Isbell showed that every f -ring identity is equivalent to a conjunction of identities
of a particularly simple form; see their Corollary 3.6, quoted below. This important result
is treated almost as a passing observation in [HI]. The proof rests on the fact that, using
the defining equations for f -rings, any f -ring word w can be rewritten as a supremum of
infima of finitely many polynomials:

w =

k
∨

i=1

ℓi
∧

j=1

fij .
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This is Corollary 3.5 of [HI]. Henriksen and Isbell sketched a proof of 3.5, which (though
convincing) is not as complete as many who have read it have wished. A treatment that
makes all details fully explicit now appears in [HJ], section 2.

Corollary [HI] 3.6. Any equational class of f -rings is defined by the identities defining
f -rings together with laws of the form

∀x1, . . . , xm :
(

g1 ∧ g2 ∧ · · · ∧ gℓ

)+
= 0,

where each gj is a polynomial.

Proof . Observe that w = 0 is equivalent to w+ = 0 & (−w)+ = 0. By [HI] 3.5, both w

and −w may be written as suprema of infima of polynomials. Finally,
(
∨k

i=1
Fi

)+
= 0 is

equivalent to the conjunction of the equations F+

i = 0, i = 1, . . . , k.

Interpreted in a totally-ordered ring A, the identity in [HI] 3.6 simply says that when-
ever the polynomials g1, . . . , gℓ are evaluated at elements a1, . . . , am ∈ A, not all of them
are strictly positive.

4. Example – unitable f-rings. Call an f -ring unitable if it can be embedded in an
f -ring that possesses a multiplicative identity. Henriksen and Isbell showed that the class
of unitable f -rings—which we call uFR—is defined by the following equational laws:

∀x, y :
(

x ∧ y ∧ (x2 − x) ∧ (y − xy)
)+

= 0

∀x, y :
(

x ∧ y ∧ (x2 − x) ∧ (y − yx)
)+

= 0.

Their proof runs as follows. By the result of Birkhoff and Pierce referred to above, an
f -ring is unitable if and only if it may be embedded in a product of totally-ordered f -rings
with multiplicative identity. Now, the equations above are satisfied by any totally-ordered
f -ring that has a multiplicative identity, for in any such f -ring, if x > 0 and x2 − x > 0
then x > 1, and thus if y > 0 then y−xy ≤ 0 and y−yx ≤ 0. On the other hand, suppose
A is a totally-ordered f -ring that satisfies the identities. Then either x2 ≤ x for all x > 0
in A or there is some x > 0 such that xy ≥ y and yx ≥ y for all y > 0. In either case, as
Henriksen and Isbell show, A may be embedded in a totally-ordered f -ring with identity.
For the sake of brevity, I will not reproduce the proof; a nice exposition can be found in
[BKW], 9.6. For examples of non-unitable f -rings, see [BKW], 9.4. [HI] also contains the
interesting result that every unitable f -ring is contained in a unique smallest f -ring with
identity (5.11.i). Because FR1 is not full in FR, this “unital hull” is not a monoreflection.
I don’t know if it has any interesting functorial properties.

5. Formally real f-rings. Henriksen and Isbell call an f -ring formally real if it satisfies
all the f -ring identities that are true in the totally-ordered field of rational numbers. An
f -ring, in other words, is formally real if and only if it belongs to HSP(Q). The most
remarkable parts of [HI] concern this equational class.

By the result in §4 above, because Q has a multiplicative identity, the members of
HSP(Q) are all unitable. Clearly, they are also commutative. It is not at all obvious
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that there are any commutative f -rings in uFR that are not in HSP(Q). [HI] includes
a remarkable example. Observe that in Q, if x1, x2, x3, y1, y2, y3, z1, z2, z3 are all strictly
positive and x1z1 > y1z2, x2z2 > y2z3, and x3z3 > y3z1, then x1x2x3 > y1y2y3. Using
the observations in section 3, this easily translates into an equational law of the kind
exhibited in Corollary 3.6. In [HI], the authors present a totally-ordered algebra over the
reals that violates this law. It is a semigroup-algebra over a semigroup with 79 elements.
The semigroup is an initial segment of a particular 9-generator numerical semigroup, but
it is modified in a peculiar way: the penultimate element is declared to be absorbing, and
the order is changed so that the last element comes before the penultimate one.

In correspondence with Isbell in the 1990s, I found a much simpler example with only
three generators that nicely illustrates the idea of the construction. Consider the following
equational law:

∀x, y, z :
(

x ∧ y ∧ z ∧ (yz − x3) ∧ (xz − y2) ∧ (x2y − z2)
)+

= 0. (∗)

This is an identity in Q, for suppose x, y and z are strictly positive rational numbers and
yz − x3 > 0 and xz − y2 > 0. Then xyz2 > x3y2, and therefore x2y − z2 < 0. We now
display an f -ring in which this law fails. Let S := {9, 12, 14, 18, 21, 23, 24, 26, 27, 30,∞}.
Define an addition ⊕ in S:

a ⊕ b :=

{

a + b, if a + b ≤ 30 and a + b 6= 28;
∞, otherwise.

In effect, 28 has been renamed ∞, placed after 30 and made into an absorbing element. Let
A denote the semigroup ring over S, with the absorbing element of S identified with 0. An
arbitrary element of A may be written in the form a9t

9 +a12t
12 · · ·+a27t

27 +a30t
30, where

the ai are integers and t is an indeterminate. Order A by declaring such an expression
to be positive if the first non-zero coefficient is positive. Then, as one may check, any
product of nonnegative elements is nonnegative. Thus, A is a totally-ordered f -ring. Now,
the elements x = t9, y = t12, z = t14 ∈ A violate the law above, for they are all positive
and

yz − x3 = t26 − t27 > 0,

xz − y2 = t23 − t24 > 0,

x2y − z2 = t30 − 0 > 0.

By way of an explanation, the semigroup S is a modification of the numerical semi-
group G := 〈3, 4, 5〉. S is obtained by replacing 5 by 5 − ǫ, identifying large elements
with ∞ and re-ordering. The reasons why the example works can be traced back to the
relations that hold between the generators 3, 4 and 5:

3 + 3 + 3 = 4 + 5, 4 + 4 > 3 + 5, 5 + 5 = 3 + 3 + 4.

It is clear that these parallel the polynomials that appear in line (∗). The theme of this
example is elaborated in [MJ2] and [MJ3].

The example of [HI] is based on the same kind of construction, taking advantage of
more elaborate relations in a larger numerical semigroup. It accomplishes more than just
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illustrating that HSP(Q) < FR, however. It is an f -algebra over R with the property
that every sub-f -algebra with 8 or fewer generators is in HSP(Q), and it demonstrates,
therefore, that any set of equational laws defining HSP(Q) must use at least 9 variables.
In a later paper, Isbell generalized the example to show that no set of equational laws in
finitely many variables can define HSP(Q); see [I].

We cannot end our discussion of HSP(Q) without including an important observa-
tion that Henriksen and Isbell made about formally real f -rings. In paragraph 3.8 they
demonstrate that every totally-ordered field is formally real. Thus, any equational law
of f -rings violated in some totally-ordered field is already violated in Q, and if k is any
totally-ordered field, then HSP(k) = HSP(Q).

6. Free f-rings. The absolutely free Ω-algebra on the generators x1, . . . , xn is the set
of all expressions that can be formed from the constants in Ω and the symbols x1, . . . , xn

using the function symbols in Ω. Each element in the absolutely free algebra is called
a word and is nothing but a well-formed string of symbols. If C is an equational class
of Ω-algebras, then the free C-algebra on x1, . . . , xn is defined to be the quotient of the
absolutely free algebra by the least equivalence relation that respects the operations and
identifies all words that are equal by virtue of the equational laws defining C. The word

problem for the free C-algebra is to provide an algorithm that decides if two words denote
the same element in the free C-algebra.

The definition of the free C-algebra that we have just given is syntactic. A well-known
proposition of universal algebra—see [C], 3.13—says that if C = HSP(A), then each free
C-algebra has a nice representation within a product of copes of A:

Proposition. Fix a signature Ω, and let A be an Ω-algebra. Then the free HSP(A)-
algebra on n generators is isomorphic to the sub-algebra of the Ω-algebra of all A-valued
functions on An that is generated by the projections πi : An → A, i = 1, . . . , n.

If we put this together with results 3.5 and 3.8 of [HI], we get immediately that the
free formally-real unital f -ring is the sub-f -ring of kkn

consisting of all finite sups of infs
of polynomials with integer coefficients; this is essentially the content of [HI], 4.4, except
that the assertion in [HI] is phrased to apply to the non-unital category.

7. Origin of the Pierce-Birkhoff Conjecture. The final section of [BP] is a list of
unsolved problems. The third asks for solutions of the word problems for several varieties
of lattice-ordered algebraic structure. It also includes an ambiguous parenthetical remark.
I quote it in full:

Solve the word problem for the free, commutative, real ℓ-algebra (ℓ-
group) with n generators. (We conjecture that it is isomorphic with the
ℓ-group of real functions which are continuous and piecewise polynomial
of degree at most n over a finite number of pieces.) Same problem for
free (commutative) ℓ-rings, for free f -rings. (The former is probably
very difficult.)

What do we know today about these problems? For commutative ℓ-groups, vector-
lattices over a totally-ordered field, formally real f -rings and formally real f -algebras over
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a totally-ordered field we have an answer. Each of these equational classes is HSP(k)
(the appropriate signature being understood) for some totally-ordered field k. The free
algebra in each of these classes, therefore, is an algebra of k-valued functions on some
kn. These functions are defined by finitely many algebraic inequalities, and therefore by
Tarski’s Theorem, the question of whether two are equal is decidable. (Note that by [HR]
3.8, there is no essential loss of generality in assuming that k is real-closed.) Thus, we
have solutions for the word problem for the free algebras in each of these classes. For
free f -rings and for free f -algebras (not assumed formally real) the word problem is not
yet solved, nor is the word problem for ℓ-rings or ℓ-algebras. The theory presented in
section 3 above shows that the word problem for free f -rings would be solved by giving an
algorithm that could decide, given a finite set of polynomials gi ∈ Z[x1, . . . , xn], if there is
a totally-ordered ring A (not necessarily reduced) and elements a1, . . . , an ∈ A such that
gi(a1, . . . , an) > 0 for all i.

Returning to the quotation, the statement in parentheses is the likely origin of the
Pierce-Birkhoff Conjecture since it is the only reference to piecewise polynomials in [BP].
It appears that the authors are referring to the free ℓ-group, but then the restriction on
degree does not make sense. (The equational class of ℓ-groups is HSP(Z), and so the
free ℓ-group should consist of piecewise linear functions.) It follows from [HI], 3.10 and
the proposition above that the free real vector-lattice on n generators is isomorphic to a
vector-lattice of piecewise-homogeneous linear functions on Rn. It is not obvious that it
includes all of them, but this was proved by Beynon in [B1] and [B2], thus completing the
proof of what we might call the “linear Pierce-Birkhoff Conjecture.”

8. Unsolved Problems. I have spent a good deal of this essay viewing f -rings through
the lens of universal algebra, for universal algebra was one of the main instruments that
Henriksen and Isbell used to investigate them. There are numerous interesting unsolved
problems. Here are two that I think are interesting enough and difficult enough to be
worth anyone’s efforts:

Problem. The example in §5 shows that there is an f -ring generated by three elements
that is not formally real. Is there an f -ring generated by two elements that is not formally
real? (I think not.)

Problem. Suppose X is the class of all formally real f -rings on 3 generators. Is there a
finite set of f -ring identities that defines HSP(X)?

These questions have interesting connections to classical work in commutative alge-
bra. The structure of valuations, which is much simpler in dimension two than in higher
dimensions, suggests that the kind of pathological order that occurs in rings that require
more than two generators may be absent when there are only two. The interested reader
may find some leads in [AJM]. An important reference for anyone interested in the second
question is [H].

The Pierce-Birkhoff Conjecture itself arose in the setting of universal algebra. The free
formally real f -algebra over R is the sub-f -ring of the f -ring of all real-valued functions
in Rn generated by the coordinate projections. Therefore, its elements are piecewise-
polynomial functions on Rn. As in the case of vector-lattices, one wonders whether it
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contains all piecewise polynomial functions. This is the Pierce-Birkhoff Conjecture. What
makes it so difficult? Experience suggests that the real crux of the matter is in the analysis
of singularities of algebraic sets. Let me say a few words about this. The frontier of any
“piece” of a piecewise polynomial function on Rn is a codimension-one algebraic subset
of Rn. It is a certain lack of understanding about the the behavior of polynomials near
the singularities that may occur in such a set that has proven to be the main obstacle
to solving the conjecture. The reason that the 2-dimensional case has been resolved but
that higher dimensional cases have so far resisted all attempts is simply that singularities
of plane curves are easier to analyze than singularities of surfaces or higher-dimensional
algebraic sets.

In the last few years, the conjecture has received some renewed attention. The most
important recent references are [LMSS], [ML2] and [W]. The Henriksen Festschrift [DM]
contains other relevant articles.
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