Lecture 13 (supplement)

These notes exhibit a few ways of showing that:

- a) every line in the plane is the graph of a linear equation, and
- a) the graph of every linear equation is a line?

The first demonstration, which is based on similar triangles, follows a pattern that can be found in expositions of analytic geometry in the early 18th century. I have found this argument repeated in algebra textbooks from the 1970s. The fat Algebra textbook of Sullivan, which was formerly used for Math 1021 at LSU, has a version of this, but it's not presented carefully, and there is much hand-waving.

Theorem 1. Suppose that $P_0 = (x_0, y_0)$ and $P_1 = (x_1, y_1)$ are points in the plane with $x_0 \neq x_1$. Let L be the line through P_0 and P_1 , and let $m = \frac{y_1 - y_0}{x_1 - x_0}$. Then, for any point P = (x, y) in the plane:

P is on L

if and only if

$$y - y_0 = m(x - x_0). (1)$$

Proof. If $y_1 = y_0$, then equation (1) reads $y = y_0$ and L is the line perpendicular to the y-axis through $(0, y_0)$. The conclusion in this case is immediate from the definition of the coordinate system. Let us turn to the situation when $y_1 \neq y_0$. Let $Q_1 = (x_1, y_0)$ and let $Q = (x, y_0)$.

 (\Rightarrow) Suppose P = (x, y) is on L. We will show that the coordinates of P satisfy (1).

Case 1: If $P = P_1$, then (1) is clearly satisfied. Suppose P_1 and P are on the same side of the vertical line through P_0 .

In this case, rays $P_0 P_1$ and $P_0 P$ are the same and rays $P_0 Q_1$ and $P_0 Q$ are also the same. Therefore, right triangles $\Delta P_0 Q_1 P_1$ and $\Delta P_0 QP$ are similar, since they share an angle. Moreover, the sign of $x_1 - x_0$ is the same as the sign of $x - x_0$ and the sign of $y_1 - y_0$ is the same as the sign of $y - y_0$. Since corresponding sides of similar triangles are proportional, we see that

$$\frac{y - y_0}{x - x_0} = \frac{y_1 - y_0}{x_1 - x_0} = m.$$

Case 2: P_1 and P_2 are on opposite sides of the vertical line through P_0 .

In this case, P_0P_1 and P_0P are opposite collinear rays and so are P_0Q_1 and P_0Q . Therefore, right triangles $\Delta P_0Q_1P_1$ and ΔP_0QP are similar, since the angles at P_0 are vertical. Moreover, the sign of $x_1 - x_0$ is opposite the sign of $x - x_0$ and the sign of $y_1 - y_0$ is opposite the sign of $y - y_0$. This implies that

$$\frac{y - y_0}{x - x_0} = \frac{y_1 - y_0}{x_1 - x_0} = m.$$

(\Leftarrow) Suppose P is not on L. Let P' = (x, y') be the point of intersection of L and the vertical line through P. Then by the first part of the proof,

$$y' - y_0 = m(x - x_0).$$

 $y - y_0 \neq m(x - x_0).$ /////

Since $y' \neq y$,

A second approach

Another version proceeds by first proving a simple version of the previous theorem, and then using change of coordinates.

Lemma 1. Let L any line through O = (0,0), and $P_1 = (x_1, y_1)$ $(x_1 \neq 0)$, and let $m = \frac{y_1}{x_1}$. Then, for any point P = (x, y) in the plane:

$$P$$
 is on L

if and only if

$$y = m x. (1)$$

Proof. The proof of Lemma 1 is exactly like the proof of Theorem 1, but it is a lot simpler because Q and Q_1 lie on the x-axis.

Proof of Theorem 1. We are going to use a change of coordinates, so we will use the notation x(P) and y(P) for the x and y coordinates of P and t(P) and u(P) for the

coordinates of P in a system with coordinate functions t and u. Choose a t-u-coordinate system centered at P_0 , which is a translate of the x-y-system. Then $t(P) = x(P) - x_0$ and $u(P) = y(P) - y_0$. Let $m = u(P_1)/t(P_1)$. By Lemma 1, $P \in L$ iff u(P) = mt(P). But the latter equation is equivalent to $y(P) - y_0 = m(x(P) - x_0)$.

A third approach

The approach does not depend on similar triangles, but on the following fact:

Lemma 2. Let Q = (a, b) and Z = (c, d) be two points in the plane, both different from the origin O = (0, 0). Then $\angle QOZ$ is right if and only if 0 = ac + bd.

Proof. By the Pythagorean Theorem and its converse,

$$\begin{aligned} \angle QOZ \text{ is right } \Leftrightarrow |OQ|^2 + |OZ|^2 &= |QZ|^2 \\ \Leftrightarrow a^2 + b^2 + c^2 + d^2 &= (c-a)^2 + (d-b)^2 \\ \Leftrightarrow a^2 + b^2 + c^2 + d^2 &= c^2 - 2ac + a^2 + (d^2 - 2bd) + b^2 \\ \Leftrightarrow 0 &= -2ac - 2bd \\ \Leftrightarrow 0 &= ac + bd. \end{aligned}$$

Suppose an x-y-coordinate system is given. Let L be any line and P_0 be any point on it. Choose t-u coordinates centered at P_0 , so $t(P) = x(P) - x(P_0)$ and $u(P) = y(P) - y(P_0)$ Choose Q so that QP_0 is perpendicular to L. Let a := t(Q) and b := u(Q). Then

$$P \in L \iff P = P_0 \text{ or } \angle QP_0P \text{ is right}$$

$$\Leftrightarrow 0 = a t(P) + b u(P)$$

$$\Leftrightarrow 0 = a (x(P) - x(P_0)) + b(y(P) - y(P_0))$$

$$\Leftrightarrow a x(P_0) + b y(P_0) = a x(P) + b y(P).$$

Thus, $P \in L$ if and only if the x-y-coordinates of P satisfy

$$c = a x + b y,$$

where $c = a x_0 + b y_0$, with $P_0 = (x_0, y_0)$ on L and (a, b) as above.