
Lecture 7: And, Or, Not June 10, 2010

So far, we have seen that the language of mathematics starts with constant symbols and
variable symbols. With the inclusion of functions symbols, we gain the ability to create
expressions. An expression summarizes a calculation, which we can exhibit using a tree
diagram. At the next level, we find the equality sign, which enables us to make assertions.
In addition to the equality sign, the language that we are considering also contains other
symbols that can be used like the equality symbol to make assertions. The most common
are ≤ (“is less than or equal to”) and < (“is strictly less than”). When inserted between
a pair of expressions, we get an inequality . An inequality between arithmetic expressions
is true if the numbers denoted by the expressions on either side are in the order suggested
by the sign.

Equations and inequalities are called sentences if they do not contain variable symbols.
Sentences are either true or false. An equation or inequality that does contain variables is
neither true nor false, but becomes true or false when the variables are replaced by con-
stants. In logic, we call such things sentential functions. Those combinations of variables
that make a sentential function true are called its solutions. One of the most common
things we do in mathematics is to seek the solutions to an equation or an inequality. The
usual methods of finding solutions involve repeated rephrasing, until we reach a sentence
whose solutions are obvious.

Example 1. Recall the example from the Zetetica: If two given numbers fall short of a

third, and if the ratio of their deficiencies is known, how do we find the third? Here, we are
supposing that we have some indirect information about an unknown number, stated in
terms of two known numbers a and b that are less than the unknown as well as the known
ratio r of the amounts by which the two fall short of the unknown one. We will translate
this into an equation using the variable x to hold the place of the unknown number. The
deficiencies are x − a and x − b. The ratio is (x− a)/(x− b) (or possibly the reciprocal of
that). The assertion about x is:

r =
x − a

x − b
and a 6= b and a < x and b < x.

Now, the last three conditions will always apply, so we will not write them. The first
condition can be restated:

r(x − b) = x − a

r x − r b = x − a

r x − x = r b − a

x (r − 1) = r b − a

x =
r b − a

r − 1

1



Example 2. Solve 24x2 − 53x + 28 = 0. We multiply both sides by the leading coefficient
24:

(24x)2 − 53(24x) + 24 · 28 = 0.

Put a new variable in place of 24x:

u2 − 53u + 24 · 28 = 0.

Now, to factor the left side, we seek numbers whose product is 24 ·28 and that add to −53.
The numbers −21 and −32 work, so:

(u − 21)(u − 32) = 0.

This 24x = u = 21 or 24x = u = 32, so x = 21/28 = 7/8 or x = 32/24 = 4/3.

Example 3. Solve 5 < |2x + 3|. There are two ways to solve this. The first is based on
meaning and the second is based on syntax.

1. This is based on the interpretation of |x − a| as the distance from x to a. The given
inequality is equivalent to 5/2 < |x− (−3/2)|, so it is saying that the distance from x
to −3/2 is at strictly greater than 5/2. Thus 1 < x or x < −4.

2. The definition of |E| is:

|E| =

{

E, if 0 ≤ E;
−E, if 0 > E.

Therefore,

5 < |2x + 3| ⇔ 0 ≤ 2x + 3 and 5 < 2x + 3 OR 0 > 2x + 3 and 5 < −(2x + 3)

⇔ 5 < 2x + 3 OR −5 > (2x + 3)

⇔ 1 < x OR −4 > x

Observe that in examples 2 and 3, we translated equations (or inequalities) into complex
statements that involved the logical connectives “and”, “or” and ”not”.

Problems.

1. Solve 5 <
∣

∣|x| − 10
∣

∣.
2. Find an inequality (with variable x) whose solution set is a union of 4 disjoint closed

intervals.
3. Solve 0 <

∣

∣|x − y| − x
∣

∣.

4. Solve 0 <
∣

∣|ax + by + c| − dx
∣

∣.
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