
Lecture 8: Coordinates on the line June 13, 2010

We’re going to leave logic for the time being in order to think about geometry.

Coordinate systems (plural!) on the line

In Lecture 1, talked about the number line. To refresh your memory, we started with a line, chose a unit
of distance, a point on the line (called the origin) and a direction on the line (called the positive direction).
We then labelled the points on the line with numbers in such a way that:

1) the origin was assigned 0,

2) the points on the positive side of the origin were labelled with positive numbers and

3)
the distance between any two

points, as measured by the unit

}

=

{

the absolute value of the
difference between their labels.

Once points have been labelled in this way, we have a coordinate system on the line. Each point has a name
that is a number, and each number names a point. Different numbers name different points and different
points have different number-names.

The difficulty is that the coordinate system was arbitrary. To make the coordinate system, we had to make
some choices—an origin, a positive direction and a unit of length. But what if, at another time or for another
purpose, someone else chooses a different origin, a different direction and a different unit of length? How
can we relate her coordinate system to ours? This is not an unusual problem. You already saw an instance
of it in the Fahrenheit and Celsius markings on the thermometer.

Problem. The following problem shows that choosing the right coordinate system can turn a problem that

appears hard into a very simple one. A man is rowing a boat upstream in a river with constant effort. As he
passes under a bridge his hat falls off. He continues rowing for 10 minutes before noticing. Immediately, he
turns around and rows with the same effort until he reaches his hat one mile downstream from the bridge.
How fast is the river flowing?

Relating different coordinate systems

It is very useful to create a symbol to denote the number associated with a point. A common practice is to use
the symbol x for that purpose. If P is a point on the line, then x(P ) denotes the number that our coordinate
system assigns to it. The expression x(P ) might seem peculiar to you. In high-school mathematics, people
often talk about numbers and positions as if there were no distinction between them; x is a point or a number,
and how you view it just depends on what you’re doing. If high school curricula can get along this way,
why do I insist on bothering you with names like P for points, and why should you tolerate an unnecessarily
elaborate expression like x(P )? I plan to show you that this is a small price for a great convenience.

Suppose a second coordinate system on the same line is chosen. We need a different name for the number
assigned to a point, so let us use the symbol w for this purpose. What is the relationship between w(P ) and
x(P )? In many cases, the answer is quite obvious:

a) If the only difference between the systems is the choice of direction, then

w(P ) = −x(P )

for all points P .

b) If the two systems differ only in the location of the origin, then w(P )−w(Q) = x(P )−x(Q) for all points
P and Q. In particular, if Ox is the origin for the x-system, then w(P )−w(Ox) = x(P )−x(Ox) = x(P ).
Thus,

w(P ) = x(P ) + b,

where b = w(Ox)

c) Finally, if a different unit is used for the w system, but the origin and direction are the same, then

w(P ) = m x(P ),
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where m is conversion factor , which tells us the length of the x-unit when measured by the w-unit, i.e.,
the number of w-units per x-unit.

Problem. Find a general formula for converting from one coordinate system to another; it should look like
this:

w(P ) = m x(P ) + b.

What is the meaning of m and b? (Hint: To find m, pick two points P and Q and think about the meaning
of the differences x(P ) − x(Q) and w(P ) − w(Q).) Will b still be the value of w(Ox) (as it was in part b),
above) when the unit of length changes? Why or why not?

Expressing functions in different coordinate systems

Problem. A stone is thrown upwards from ground level. When it reachers a height of 160 feet, it is still
traveling upwards at 24 feet per second. When was it thrown? When does it return to the ground?

Background. The laws of motion (which the physicists have supplied for us) tell us that the height t second
after reaching 160 feet is:

h = −16t2 + 24 t + 160.

The equation is a valid description of the height from the moment the stone was thrown until the moment it
returns to the ground. Here, t is a coordinate system on the time line. We used seconds as the unit, placed
0 at the time the object was at 160 feet and let the direction be the natural one. The object was thrown at
a time with a negative coordinate.

Solution. We can simplify the equation by choosing a unit of time that has duration 1/4 second. Keep the
same origin and direction, let w be the coordinate system with these units. For any point Z in time,

w(Z) = 4t(Z).

(Why is it NOT w(Z) = 1

4
t(Z)?) Then

h = −(4t)2 + 6(4t) + 160 = −w2 + 6 w + 160.

We can simplify the equation further by choosing a coordinate system that will cause the linear term in the
expression for the function to vanish. To do this, we create yet another coordinate system u with its origin
placed strategically. Let

u(P ) = w(P ) − 3.

In other words, the u-clock, like the w-clock, is marked in quarter seconds, but it starts when the w-clock
reads 3. (The reason 3 was chosen will be apparent in a moment.) Then

h = −w2 + 6 w + 160

= −(u + 3)2 + 6 (u + 3) + 160

= −u2
− 6 u − 9 + 6 u + 18 + 160

= −u2 + 169

= (13 − u)(13 + u).

In the u-coordinate system, we see that h = 0 when u = ±13. The object was thrown when u = −13; it
returns to the ground when u = 13. Since the u-coordinate system has its origin 3/4 of a second after the
w-origin, the object was thrown 10/4 seconds before the moment it reached 160 feet (i.e., when t = 2.5), and
it will hit the ground 16/4 second after that moment (i.e., when t = 4).

Mini Project

In the problem that we solved in the last section, we made two coordinate transforms to convert a quadratic
equation of the form a x2 + b x + c = 0 into one of the form u2

− s = 0. The latter form is easy to solve, and
the equations for the coordinate transforms enable us to take a solution for the latter back home to solve
the former. In this mini-project, I ask you to show how the details work the general case.
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