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Introduction 
 
 One of the main goals of our project was to design an application of readily 
accessible mathematics to a physical problem in a non-trivial way.  Often the first 
applications of mathematics to physical situations that students (both secondary and 
undergraduate) see are not particularly powerful examples.  We attempted to design a 
project that would provide a convincing and historically important application of 
elementary mathematics by basing our project on a 3rd century C.E. Chinese surveying 
text, The Sea Island Mathematics Manual.1  In this project students are required to 
perform measurements of inaccessible objects (for example, large buildings) by the use 
of sighting poles and the Theorem of Similar Triangles.  While it is not unusual for high 
school students to see applications of this theorem to measurement, the surveying 
methods of Sea Island require the use of two pairs of similar triangles, solving a system 
of equations and some geometrical insight.  By a more intensive use of the Theorem of 
Similar Triangles, the students are able to make measurements of distant objects without 
approaching them.  Class discussions emphasize the historical importance of this skill to 
help the students further their understanding of the mathematical concepts.       
 
 

I. Mathematical Discussion 
 
 
A.  Applicability of mathematics to physical problems 
 
 It is not unusual for high school students to have seen the theorem of similar 
triangles used to measure the height of, say, a telephone pole or tree.2  This is an 
interesting example and it is well-suited to the secondary level, but it involves what are 

                                                 
1 Frank Swetz, The Sea Island Mathematical Manual: Surveying and Mathematics in Ancient China, Penn 
State Press, 1992.   
2 Or perhaps it is unusual in the sense that many students probably do not actually perform this 
measurement for themselves.  Instead, they may work a problem from a text in which the data is already 
given.  The mathematician David Mumford writes that, “I tried (unsuccessfully) to get each high school in 
which my children were enrolled to go outside during geometry and find out how tall the oak in the yard 
really is.”  (This quote is taken from the preface to the pamphlet Drawbridge Up, by Hans Magnus 
Enzensberger, A. K. Peters, 1999.)  



often unrealistic assumptions—in particular, one typically measures the distance from the 
telephone pole (or tree) to the observer or sighting pole, and this distance can be quite 
large.  This works sufficiently well with some objects, like a telephone pole, but it 
requires that the object be quite narrow.  By contrast, this method poses difficulties in the 
measurement of, for example, one of the Great Pyramids.  (The base of the pyramid must 
be accounted for in the measurement.)   Also, there are numerous applications where one 
can only perform “local” measurements in the near vicinity of the observer; in this case, 
one may not be able realistically to measure the distance between observer and the object 
of measurement.   
 Thus this typical application of similar triangles has a number of shortcomings as an 
actual technique of measurement.  From a pedagogical point view, it also does not make 
a very deep use of the theorem of similar triangles.  In order to intensify the mathematics 
in the use of similar triangles for measurement, and to help demonstrate its powerful 
applicability, we have centered our project on a 3rd century C.E. Chinese surveying text: 
The Sea Island Mathematics Manual.  This particular text outlines methods for measuring 
a number of inaccessible objects (sea bluffs, deep ravines, lengths of fortress walls, etc.).  
The main method requires the use of two sighting poles, rather than the one that is often 
seen in textbook examples of the use of similar triangles.  The use of two sighting poles 
has the advantage of allowing the observer to perform only local measurements.  The 
trade-off for this added power is that now the observer must deal with two sets of pairs of 
similar triangles.  Ultimately this produces a system of two linear equations in two 
unknowns that must be solved.  Hence the algebraic manipulation required to solve the 
problem is more substantial than the traditional textbook version of the measurement 
problem, which requires the solution of a single linear equation in one unknown.                      
 
B.  Proportionality and similar triangles 
 
 The basic tool in our use of measurement is the theorem of similar triangles.  
Students gain familiarity with this concept by employing it to solve problems involving 
measurement; then later in the activity, they explore how it can be used to provide a 
foundation for the notion of the tangent function.  Also, on the last day of the activity, 
they explore an interesting proof of this theorem using the “out-in complementary 
principle” of Liu Hui’s surveying text.    
 
C.  Systems of linear equations 
 
 The Sea Island method of measuring inaccessible distances involves the analysis of 
two pairs of similar right triangles.  This yields a system of two linear equations in two 
unknowns which must be solved in order to obtain the desired measurements.  Thus the 
activity reinforces the importance of systems of linear equations in applications.     
 
D.  Modeling      
 
 After attempting some of the difficult measurements (e.g. measuring the height of a 
distant tower), the students better appreciates some of the obstacles to modeling a 
physical situation using mathematics.  We designed our project so that the students would 



first attempt the measurement of a campus tower without knowledge of the Sea Island 
method.  This poses a number of obstacles to modeling, and the first stage of the activity 
is meant to encourage students to document these difficulties.  Once they see the 
obstacles involved, they better appreciate how mathematics can be used to help surmount 
some of the difficulties.      
  
E.  Geometrical origin of the tangent function and an example of an invariant 
 
 On the last day of the activity the students explore how, corresponding to a fixed 
angle θ, one may associate a ratio (the tangent) that depends only on the given angle θ.  
That this ratio depends only on the angle θ is justified using similar triangles.  It is also 
illustrates that the ratio is an invariant of an equivalence class (under similarity) of a 
given right triangle.         
 
 

II. Pedagogical Discussion 
 
 
A.  Applicability of mathematics 
 
 It is extremely important for future teachers to be convinced of—and to have 
experience with—the applicability of mathematics.  A familiarity with and appreciation 
for this applicability can be communicated to secondary students, who too often 
encounter the problem of wanting interesting applications of mathematics yet not having 
the mathematical or scientific sophistication necessary to understand such applications.  
With this in mind we have tried to design our activity so that most if not all of it can be 
transferred to a high school Geometry or Algebra II class. 
 At the same time, we have sought to make the project interesting to mathematically 
sophisticated undergraduates.  While the activity really requires no mathematics beyond 
the high school level, it does demand a mature approach to problem-solving.  It also 
synthesizes several aspects of geometry (similar triangles), linear algebra (systems of 
linear equations) and trigonometry (the tangent function as a function) in a way that is 
not typically seen in a single course in the undergraduate curriculum.  We believe that 
this synthesis of different subject areas in mathematics is very important in the 
preparation of future secondary teachers.   
 We have also purposely designed a major part of the activity to take place “off the 
paper.”  By having the students attempt difficult measurements outdoors, the activity 
helps to give future teachers a robust sense of what mathematics entails.  Throughout the 
activity, the students appeared more comfortable with the abstraction of mathematics 
rather than its application.  This is to be expected since most of one’s mathematical 
training involves such abstraction, but it is useful to keep in mind how much of 
mathematics was developed to model physical situations.               
 
B.  Historical motivation 
 



 In order to emphasize the historical importance of indirect measurement, our team 
chose to make the centerpiece of the activity the 3rd century Chinese surveying text, Liu 
Hui’s The Sea Island Mathematics Manual.  By discussing this text and its cultural 
importance with the students, the mathematics behind it is humanized to an extent that is 
sometimes unusual in an undergraduate class.  One of the main goals of the activity is to 
provide a compelling application of mathematics, and we feel that discussing this 
application in a historical context helps make this a particularly nice application of 
relatively simple mathematics.                 
 
C. NCTM Standards  
 
 The publication of the National Council of Teachers of Mathematics (NCTM)  
Standards documents (1989, 1991, 1995, 1998, 2000), focused significant attention on 
curricula, professional development, and assessment issues as they relate to the teaching 
and learning of mathematics.  The message contained in these documents had a 
significant impact on the development and implementation of the plan for this proposed 
project. As is noted in the Principles and Standards (2000), the world today is 
dramatically different from what it was in 1989 when the first Standards document was 
published.  Student access to computers and the World Wide Web is now common, 
whereas in 1989 the availability of handheld scientific and graphing calculators was 
uncommon.  Anything that has been algorithmized can be done by a computer.  This 
means that actually performing a calculation is no longer a problem about which most 
people have to worry.  Rather, what requires attention is determining what calculation to 
do.  In short, people now need more understanding and less procedural skill.  The practice 
of collecting and representing data from real world settings and then applying a 
mathematical concept to that skill is another leap in the direction that modern 
mathematics has taken us.  Our project focuses on the application of these skills by 
learning from historical sources how to apply the knowledge of their modern day world 
to that used in the 3rd century from Sea Island Mathematics Manual.  
  
 
 

III.  Lesson reports and student work 
 
 This activity was conducted by Maribeth Olberding (team educator) in her junior-
level Modern Geometry course in Spring 2002.  The class consisted of 10 students, 5 of 
whom were mathematics education majors.  Students were divided into three groups.  
They maintained these same groups throughout the activity.  A MWF class, the activity 
took place over three class meetings during the span of one week.  Prior to this activity, 
the students spent the first week of class by studying Oliver Byrne’s colorful version of 
Euclid’s Elements3 as a quick (and rather novel) review of the nature of geometrical 
arguments.   
  

                                                 
3 A digital reproduction of Oliver Byrne’s 1847 text can be found online at 
http://www.sunsite.ubc.ca/DigitalMathArchive/Euclid/byrne.html.  Byrne replaces mathematical notation 
with a system of color-coded references to angles, segments, triangles, etc.     



 Day 1.  The activity began with a warm-up problem meant to reinforce the notion 
that physical situations often require indirect measurement.  This warm-up problem took 
approximately 35 minutes.  Despite the amount of time devoted to this rather simple 
exercise, we believe it worthwhile to get the students thinking about the difficulties 
sometimes involved in indirect measurement.   
 
Warm-up activity: Using a yardstick, find the perimeter of the following objects:  Group 
A, classroom door; Group B, one panel of the classroom blackboard; Group C, 
classroom window.   
 
 The students, as members of a junior level mathematics course, were suspicious of 
this exercise.  Although they approached it with good humor, they appeared to be 
surprised by having to accept the imprecision in the use of yardsticks.  One surprising 
outcome of this experiment is it revealed how, despite the training and sophistication of 
the class members, a very simple application of mathematical ideas to physical problems 
could raise naïve questions.  It provided an interesting contrast to the confidence with 
which the students had approached the abstract setting of Euclid’s Elements the previous 
week.      
 Group A began the exercise with a long discussion of how the problem was “too 
easy.”  Group C began with a curious discussion of whether it mattered if the 
measurement was made from the top to the bottom of the window, or vice versa.  All 
groups, despite their initial discussions, quickly completed their assignments.    
 
In-class problem:  Find the length of the diagonal of the door (blackboard, window).   
 
 A student in Group A began this exercise by attempting to measure the diagonal 
using the yardstick.  She was stopped by the members of her group, who asked the 
instructor, “Do we do this by hand?”  The instructor simply shrugged and left the students 
to decide for themselves whether to use a yardstick or not.  Group C, wanting to use 
trigonometry, debated whether or not this would be appropriate if the diagonal was at 45 
degrees.  (They apparently wanted to be certain that the angles involved corresponded to 
memorized values for the trigonometric functions!)  Finally all groups settled on the 
Pythagorean theorem as not only easier, but more accurate, since the diagonal was hard to 
follow with a yardstick.    
 
 
 
 
 
 
 
 
 
 
 
 



 
 
Follow-up Problem (all groups): Measure the length of the diagonal of the classroom.   
 
 In this problem, there was no debate.  The students, taking into account the size of 
the room and the clusters of desks blocking potential measurements, immediately agreed 
that it was easiest and more accurate to measure the diagonal via the Pythagorean 
theorem.  The tile floor of the classroom allowed them a further simplification: they 
measured one tile, then counted tiles to arrive at a quick estimate of the measure of the 
diagonal. 
 
Discussion (approximately 10 minutes): The students were asked to return to their seats, 
and the instructor related the traditional legend of Thales measurement of the pyramids 
by shadow reckoning.  She drew a pyramid on the chalkboard with Thales a good 
distance away.   She asked the students to indicate possible problems for Thales in 
seeking to measure the height of the pyramid.  The students quickly pinpointed a number 
of problems such as the awkward shape of the pyramid (how does one measure it’s 
altitude?), and the difficulty of devising a long enough yardstick or tape measure.  The 
instructor then asked for suggestions on how Thales could measure the pyramid.  One 
participant in the class, a teacher seeking mathematics certification, suggested similar 
triangles.  The students reminded each other of the theorem of similar triangles that, in 
their words, “corresponding sides are proportional.”  This also led to a discussion among 
the students of the difference between similar and congruent triangles. 
 The instructor related a version of the legend of how Thales used the sun and 
shadows to measure the height of the pyramid.  Thales paces a straight line away from 
the pyramid until he can sight the sun just over the tip of the pyramid.  Having measured 
the distance from the pyramid, he measures now the length of his shadow.  He knows 
also his height, so using a pair of similar triangles, he calculates the height of the 
pyramid.       
 To close the class, the instructor assigned the following group project to be 
completed by the next class period.  The students maintained their same in-class groups 
for this project. 
 
Group Project 1 (Due next class period):  Measure the 
height of the tower of the Administration Building on the 
ULM campus.  Discuss the reliability of your 
measurements and any obstacles you encounter in making 
your measurement.   
 
 The students asked questions about how they were 
supposed to accomplish this.  The instructor deliberately 
gave no clues.     
 
Day 2.  The students began the next class period by 
discussing the successes and failures of their attempt to 
measure the Administration Building tower.  The instructor 



asked whether the groups had been successful in their measurements.  The students, 
despite a diversity of methods (discussed below) used to solve the problem, expressed 
confidence in their measurements.  They were reassured by the fact that all 3 groups 
found the height to be with the range of 95 to 115 feet.  When pushed further on this 
point, however, they agreed that this was probably too significant of an error to make 
their measurements useful. 
 
Group B. This group tried three different methods to measure the height of the tower. 
   

(1) We just looked at it and estimated the height by our personal imagination.  We figured it 
to be about 120 feet.  This is obviously not very reliable or accurate, but it gets you started.  
To estimate it just by looking at it would be more accurate if you knew the height of a 
building close to it and could compare them. 
 
(2)  Next we counted the windows on the tower and multiplied that (18) by the length of one 
window (68 inches) which is about 102 feet.  This is much more accurate, except the top 
window is perhaps longer or shorter than the others, but we are probably within 2 feet.   
 
(3)  Next we used the legend of Thales to get the height of a light pole in front of the tower.  
We lined up the end of one of our shadows with the end of the pole’s shadow.  We then 
measured the length of our shadow as well the shadow of the pole.  After we knew the height 
of the pole (19.8 feet), we measured the distance from the pole to the tower (84 feet).  We 
then put our face on the ground in a straight line with the pole and edge of the tower.  We 
moved back until our head lined the top of the pole with the top of the tower.  [This 
discussion was accompanied with a diagram and a calculation that finds the height of the 
tower to be 106.2 feet.]  This is a fairly accurate approach, except since shadows are not 
definite lines, you are dealing with estimates.  You must wait until the shadows are longer to 
reduce the roundings [?] and make for more exact figures.    

 
Method (3) is interesting in that the students sought to use shadow-reckoning but found 
that, while simple to understand, it was difficult to achieve in practice.  Note that the 
students did not actually use their shadow measurements; evidently they felt compelled to 
carry them out in order to mimic what Thales did, even though the information proved 
extraneous for them.   
 
Group A.  This group tried 3 different ways.  They stated, “We did not use the legend of 
Thales or trigonometry because the shadow was going across the top of [another] 
building and could not be measured.”  Note that this group did not recognize that Thales 
method could also be applied without shadows.   
 (1)  The students first tried the same method as (2) of Group B.  Measuring a 
window and multiplying by the number of windows, they arrived at a height of 102 feet 
and 2 inches.  They recognized that “The error in this method is having to estimate the 
height of the stucco panel at the top….We are also assuming that all the panels are 
exactly the same.  If this is not true then our error will be greater.” 
 (2)  For their second method, the students turned to the Internet.  There they 
discovered (on a website entitled “Bizarre Stuff”!) how to use a device called a 
“hypsometer” to measure the height of a tree.  The website discussed how to use a 
yardstick as a hypsometer.  “Stand exactly 25 feet from the tree being measured.  Hold 



the yardstick, with the zero end downward, 25 inches from your feet.  Line up the bottom 
of the yardstick with the base of the tree.  Without moving your head, look to the top of 
the tree.  Where it crosses the yardstick, read of the measurement in inches.  Each inch 
will equal one foot in the tree’s height.”4  The students used the hypsometer to measure 
the tower as 114 feet high.  They stated that “the error in this method is the accuracy of 
our measurement, both the 25 feet segment and the 25 inches from our eye to the 

yardstick.  Looking up without moving your head 
also leaves room for error.” 
 (3)  The third approach of Group A was 
particularly novel.  “We attached ribbon to a bunch 
of helium balloons.  [See picture.]  The balloons were 
then raised to the top of the tower, and we measured 
the ribbon.  This was the least accurate of our 
methods because of the wind.  We did this twice and 
the wind was blowing in the opposite direction, so we 
decided to average our 2 tries.”  They computed the 
height with this method to be 106 feet.  “The more 
times you do this, the closer your answer will be.” 
 

Group C.  This group tried two methods.  In the first method, which was also but the 
other two groups, they measured the height of a window on the tower and multiplying 
according to the number of windows.  They arrived at a height of 103.92 feet.  In the 
second, they used similar triangles in a fashion similar to that of Group B, method (3).  
They calculated the height of the tower to be 114.9 feet.   
 
Conclusion: We view this group project as a good way to emphasize the difficulty of 
putting mathematical ideas into practice.  In fact, the students appeared the most 
confident in their estimates that used a minimum of mathematical reasoning, namely 
measuring the height of a window and multiplying by the number of windows.  Despite 
the juxtaposition of the story of Thales with the assignment of the group problem, the 
students appeared distrustful of their estimates achieved using this method.   
 We were pleased with the novelty of some of the students’ solutions, such as the use 
of the hypsometer or the balloons.  Also, we had not anticipated that the students would 
use the windows as a means to measure the tower.  We were pleased in the students 
desire to try several methods in order to confirm their estimates.  As mathematics 
educators, we would have liked to have seen the students introduce novel mathematically 
based approaches to this project.  Yet viewed against the background of history, the 
introduction of new mathematically based approaches to measurement is a rather 
exceptional occurrence.5 

                                                 
4 This device and its use were unknown to the members of our team.  We think however that an excellent 
group project in the context of this lesson would be to prove that it works.  Ultimately, it is unsatisfactory 
for the more difficult measurements we have the students perform next.  In particular, the need to pace off 
the 25 feet from the tree (what if the tree is a distant bluff separated from us by a small sea?) is a deficiency 
in the use of the hypsometer.            
5 The students, in an in-class discussion after completing the project, made some interesting “sociological” 
observations.  They remarked on the comical effect of a mathematician lying on the ground in order to 



 
Sea-Island Discussion: After discussing the successes and failures of the measurement 
of the height of the tower, the students were presented with a new twist on this same 
problem: Would it be possible to measure the tower if one were not allowed to approach 
it?  The students agreed that the methods they used would not work in this case.  The 
instructor posed the question of whether the remote measurement of a distant object 
could be useful.  The students immediately offered situations (a very distant object, an 
object across a canyon, etc.) in which such measurements would be useful.  The 
discussion led to military applications of indirect measurements (e.g. the height of a 
castle wall); this appeared to be one of the most convincing applications of indirect 
measurements.   
 At this point the instructor introduced The Sea Island Mathematics Manual, and 
pointed out that as early as 263 C.E. the Chinese were employing sophisticated 
arguments involving sets of similar triangles to measure inaccessible distances.6  The 
motivating example is that of Sea Island, a distant bluff separated from the observer by a 
small sea.  Liu Hui, the author of the text, outlines a solution for this problem that 
involves only “local” measurements, that is, measurements that can be accomplished in 
the near vicinity of the observer.  The basic idea is to plant two same height sighting 
poles, or “gnomons,” a fixed and measurable distance apart (see figure below.)   

 
 The poles lie on a line emanating from Sea Island.   
Lying on the ground, the observer then sights the top of 
Sea Island over the top of each pole; the distances A and 
B from each sighting position to the sighting pole are 
then measured.  The following five measurements are 
known: the height of the poles, the distance between the 
poles, and the 
two distances 
A and B.  
Note that all 
five of the 
distances are 
easily 
obtained in 
the immediate 

                                                                                                                                                 
accomplish a measurement.  This is perhaps an example of the cultural perception of mathematics (even 
among mathematics majors!) as an abstract, austere activity. 
6 It is evidently unclear whether the Chinese used ratios in their computations with similar triangles.  They 
appear to have used, instead, calculations involving areas of rectangles, where the rectangles inscribe the 
relevant right triangles.  While we did not have time to incorporate the Chinese method into the activity, we 
believe it would make an excellent topic of exploration in either a high school or college class.  
Interestingly, the Chinese seem to have performed their calculations by cutting rectangles from diagrams 
and manipulating these rectangles.  The mathematics involved is clever but elementary.  Again, this is a 
nice way to emphasize a more robust conception of mathematics than is often seen by undergraduate 
mathematics majors, who are accustomed to manipulating formulas rather than strips of paper.  For a 
discussion of this technique (“the out-in complementary principle”), see pp. 39-41 of Sea Island.         
 



vicinity of the observer.  Using the theorem of similar triangles, it is now possible to 
compute the height h of Sea Island; also, this same computation produces (rather than 
requires!) the distance d from the first sighting pole to Sea Island. 
 
 To reinforce the Sea Island method, the students were given the following in-class 
activity to simulate the use of sighting poles. 
 
In-Class Group Project (approximately 30 minutes):  Using yardsticks as sighting poles, 
measure the following distances using the Sea Island method: Group A: floor to the top 
of the chalkboard; Group B: height of classroom door; Group C: floor to the top of 
window.  
 
 Since these measurements had to be accomplished in a very small space, the students 
were given fishing line to simulate the line of sight.  This also allowed the students to 
visualize the formation of the sets of similar triangles to be used in the computation of the 
heights.7   
 In completing the in-class assignment, all three groups encountered difficulties in 
obtaining their measurements.  For example, one group pointed out that the 
measurements would be incorrect if the fishing line was not taut.  Another group 
discussed whether or not the problem could be solved if the “shadows” of the sighting 
poles (i.e. the base of the small right triangle formed by the sighting pole and the fishing 
line) overlapped.  Reaching no conclusion, they simply moved their sighting poles farther 
apart until the “shadows” no longer overlapped.   
 
 
 
 
 
 
 
 
 
 
 
  
To end this class period the three groups were given a new project: 
 
Group Project 2:  (Due next class period)  (a) Use the Sea Island method to measure the 
height of the tower on the administration building.  (This is the tower that they were 
asked to measure last time.)  (b)  Measure the height of the campus bridge over Bayou 
Desiard.  (The students were not told to use the Sea Island method for this measurement.  
We wanted to see if they would adapt the method to this rather different setting.) 

                                                 
7 Instead of these contrived classroom measurements, the students could have been taken outside as a group 
and given a more realistic outdoor group project to reinforce the Sea Island method.  However we preferred 
to have the students discover the experience (and difficulties) of performing the actual measurements 
outdoors on their own.   



 
 The students were also given a bonus challenge problem: 
 
Challenge Problem: (Due next class period)   Measure the height of the administration 
building from the seventh floor of the university library.  All measurements must be 
obtained while positioned on the seventh floor of the library.   
 
Day 3.  The three groups returned the next class 
period with completed projects.  Groups A and 
B found the height of the tower to be 
approximately 100 and 102 feet, respectively.  
Group C found the height to be about 123 feet.  
All three groups used the Sea Island method 
correctly.  Group B commented that the 
“obstacles are keeping meter sticks 
perpendicular and the grass isn’t completely 
flat.”  In class the students also commented that 
it also could be difficult sighting the top of the 
building while lying on the ground.  
 All 3 groups were able to successfully adapt the Sea Island method to the 
measurement of the height of the bridge above Bayou Desiard.  Group A found the height 
to be 15 feet 3 inches.  Group B measured the height at 186.35 inches.  Group C 
measured the height at 13.46 feet.  Group A confirmed their measurement by lowering a 
stick on a string from the top of the bridge till it touched the water.  They then measured 
the length of the string at 15 feet 1 inch.  They stated, “We did this method because we 
wanted to be more sure of our measurement from Liu Hui’s [Sea Island] method.”  
 
 Only one group (Group C) attempted the challenge 
problem.  The challenge problem can be solved by a 
modification of the Sea Island method.  However, the 
yardsticks have to be used in a different way.  Liu Hui solves 
this problem in The Sea Island Mathematics Manual by the use 
of carpenter squares, which can be formed by joining the ends 
of the two yardsticks to form a right angle.  Ultimately the 
problem reduces to two sets of similar triangles (cf. page 49 of 
Sea Island).      
 Group C was not able to adapt the Sea Island method to 
this measurement of the height of the administration tower 
from the 7th floor balcony of the library.  However, they did use an imaginative method to 
obtain the measurement.   
 

We measured the distance from the bottom of the 6th floor to the bottom of the 7th floor (= 
191.5 inches).  This allowed us to determine the height from the ground to the top of the 6th 
floor (= 1149 inches).[1]  While standing on the 7th floor balcony, we realized that we were 

                                                 
[1] Note that the students were attempting here and throughout their solution to follow the instructions of the 
Challenge Problem to make all measurements while on the 7th floor. 



not quite as high as the tower.  This presented us with a problem.  How do we estimate the 
height remaining [i.e. the difference in height between the library’s 7th floor balcony and 
the administration tower]?  The solution was not in front of us, but behind us.  We found 
the reflective windows of the library [which were behind them] and were able to use the 
image before us as a gauge.  Using the treeline as a reference point, we took notice of 
where our eyes were lining up with the tower.  We used Sam’s eyes because his fell right at 
the top of the highest pane of stained glass [on the administration tower].  His eyes are 
65.25 inches off the ground.  With only the height of the concrete section of the very top of 
the tower unknown, we estimated it to be half of a window pane [on the tower] by 
observation from the balcony.  We measured the height of a window pane and then put the 
numbers together (= 103.95 feet to the top of the administration tower).   

 
 The students located three sources of possible error: “(1) The height of each floor of 
the library should be consistent, however it may be a little off; (2) Even though the 
reflection in the mirror [reflective glass] appeared to be a true representation, it could 
have shown a slight distortion; (3) Estimating the top concrete section to be half of 
[administration tower’s] stained glass window pane.” 
  
 In the class discussion that followed, the students expressed confidence in their 
measurements of the Administration tower.  However, they all recognized that small 
errors in their measurements using the sighting poles could translate into large errors in 
the computation of the height of the tower. 
 At the close of the discussion, the students inevitably asked for the “right” answer, 
namely, what is the height of the administration tower?  They were unhappy to learn that 
they were the experts on its height.  While of course it would be possible to learn the 
height of the tower from data the university keeps on its buildings, we felt it better to 
leave this a mystery, since the point of the Sea Island Method is to measure inaccessible 
distances and to gain confidence in the mathematics that replaces direct measurement.   
 
Follow-up assignment:  In addition to the Sea Island problem, there are 11 other 
surveying problems in the Sea Island Mathematics Manual, some of which are quite 
challenging.  The instructor assigned two of these problems for homework: 
 
Individual Homework Assignments: (a)  Design a method using two sighting poles to 
measure the height of a pine tree on a hill; (b) Design a method using two sighting poles 
to measure the length of a fortress wall.8  
                       
 This discussion and the assignment of the individual homework problems took 
approximately 10 minutes of the class period.  The rest of the class period was devoted to 
further exploration of similar triangles.  In particular, the instructor led the class through  
Liu Hui’s proof of the theorem of similar triangles using his “out-in complementary 
principle.”  (See pp. 37-39 of Sea Island for a discussion of this proof.)  This took 
approximately five minutes.   
 The class then explored an invariant for similar triangles, namely the ratio of the 
lengths of two sides.  Of course, this ratio coincides with the tangent of an angle of the 
                                                 
8 The solution to these problems can be found in Sea Island, pp. 43-46. 
 



triangle, but the instructor did not mention this connection, preferring instead for the 
students to discover this on their own.  This was accomplished through the following 
series of in-class group activities. 
 
In-class activity:  On a blank piece of paper positioned on its side, draw a horizontal line 
near the bottom of the page.  (Inch grid paper also works very well for this exercise; in 
what follows, substitute “inch” for “centimeter.”)  Draw a slanted line that meets the left 
endpoint of the horizontal line at an acute angle θ.  Using a ruler, number marks every 
centimeter along the horizontal line.  (See figure.)  Draw a vertical line from each of the 
centimeter marks to form a series of trapezoids along the horizontal line.    
 

 
View the diagram as compromised of a series of similar right triangles.  Note that each 
triangle shares the angle θ (angle BAC in the diagram).  Construct a table of 
measurements A and B, where A represents the length of the base of a triangle, and B 
represents the length of the side opposite the angle θ.  Finally, in a third column, 
compute the ratio B/A.  What do you notice?  Can you explain what you observe?   

 After the students completed this activity, the instructor gathered the data from the 
students and asked them to explain how each group arrived at a different constant ratio.  
The students recognized immediately that the ratio should depend on the angle θ in the 
diagram.  As each group had begun with a different diagram, the constant ratios differed 
also.  The instructor summarized the conclusion: To each angle θ, one may associate a 
unique number.  It can be computed as the ratio of the lengths of two particular sides of a 
right triangle with angle θ.  In this way, one can define a function f(θ) = B/A, where B/A 
is computed as above (and of course depends on the angle θ ).  At this point the instructor 
posed the question of whether this defines a new function?  After some discussion, the 
students concluded that this is the familiar tangent function.9  The instructor summarized 
this by emphasizing that our familiar tangent function can be shown to be well-defined 
because of the theorem of similar triangles.               
 
 
 

                                                 
9 It is interesting that the students did not anticipate the connection with the tangent function until the final 
discussion. 
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III.  Conclusion 
 
 By having the students discover for themselves many of the difficulties involved in 
collecting data and modeling a physical situation, we believe they achieved a greater 
appreciation of the powerful tool that mathematics can be in measuring inaccessible 
distances.  By exploring the theme of similar triangles in a number of ways, we hope the 
future teachers in the class will think in a richer way about a fundamental theorem of 
geometry.   As the activity progressed, the students traded complicated measurements and 
simple use of the Theorem of Similar Triangles for less complicated measurements and 
deeper use of this theorem.  At the same time, they saw that mathematical insight (in 
particular the use of two sighting poles, rather than one) led to a more powerful means in 
which to obtain measurements of distant objects.  This gave students a sense that the 
measurements get easier and more accurate as the use of mathematics involved becomes 
more sophisticated.  As instructors we were pleased with the enthusiasm which the 
students undertook their projects and with the interesting and inventive approaches they 
discovered to some challenging problems.      
   
 


