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Introduction 
 

 This report is a record of activities performed in accordance with the directives of the NSF 
project "Mathematics for Future Secondary Teachers.  The purpose of the project is to formulate a set 
of units of lesson segments which are appropriate for pre-service secondary teachers.  Our part in the 
project was to, as a team, develop and report on a lesson presented in the academic year 2001-02.   
 
 Our team included a math educator, mathematician, two undergraduate students, two in-service 
teachers who took the course, and one teacher.  The basic concepts of the lesson were piloted in a 
special topics course (Introduction to Mathematica™), linear algebra, and college geometry.  The 
special topics course project occurred in the fall semester, and the linear algebra and college geometry 
lessons occurred in the spring semester.  The spring and fall presentations were different in both 
duration and goals.   
 
 This report will conform in structure to the report Toward a Set of Lessons on Accuracy and 
Uncertainty in Measurement for Future High-School Teachers, by James J. Madden, a Principal 
investigator of the study. 

 
I.  Mathematical Discussion 

 
 The lesson was the mathematical representation of objects in the plane and transformational 
geometry using a homogeneous coordinate system and 3x3 matrix representations of motions in the 
plane.  Homogeneous matrices and coordinates are used in computer graphics to represent motions of 
both two and three dimensional objects.  This lesson deals exclusively with planar objects.  

 
While a lesson on homogeneous matrix representation of rigid motion is contained in the 

college geometry course text1, it does not appear in standard high school algebra and geometry texts.  
The typical discussion of transformation matrices in the high school text involves 2x2 matrix 
multiplication, which allows for only a very limited set of isometries in the plane.  The purpose of this 
lesson was to give teachers a simple introduction to the concept for the plane, with the following 
expectations for use: 

1) as an authentic application of matrix multiplication; 
2) as an extension of the textbook application of matrix multiplication to transformational 

geometry; 
3) as a connection between composition of linear functions and matrix multiplication. 
4) as an application of the connection between the slope of a line and the tangent of the angle of 

inclination. 
Each of these applications involves multiple representations of rigid motion in the form of a geometric 
construction using patty paper, a reflecting tool, or dynamical geometry software, as well as an 
algebraic representation using homogeneous coordinates and 3x1 matrix representations of points in 
                                                 
1 See Meyer, Walter. (2000). Geometry and Its Applications, Chapter 6. 



the plane. The concept is rich in connections; it can be the organizing concept of a project or limited to 
a small unit.   
 
 The homogeneous representation of the point (x, y) in the coordinate plane is the ordered triple 
(x, y, 1).   The following are homogeneous matrix representations of some of the basic motions of the 
plane.   

 1) The matrix of rotation centered at the origin (0, 0) is  
cos sin 0
sin cos 0

0 0 1

θ θ
θ θ

−⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

, where θ is the 

directed angle of rotation. 

 2) The matrix of translation by the vector (h, k) is   
1 0
0 1
0 0 1

h
k

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

.   

 3) The matrix of reflection in the line Ax + By = 0 is 

2 2

2 2 2 2

2 2

2 2 2 2

2

2

0

0

0 0 1

B A AB
A B A B

AB A B
A B A B

− −
+ +

− −
+ +

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

,  A >0 .    

 
For example, we can rotate the point (1, 2) 30° about the point (-3, -4) by combining three motions.  
First, translate (1, 2) by the vector (3, 4).  This in effect moves the center of rotation to the origin.  
Second,  rotate the resulting point 30° in the positive (counterclockwise) sense,  about the origin. 
Third,  translate the result back by (-3, -4).  The 30° rotation about (-3, -4) is the composition of these 
three isometries represented by the product of three matrices 

 

6 6

6 6

3 3 3 101
2 2 2

3 4 3 11
2 2 2

1 0 3 cos sin 0 1 0 3 1
0 1 4 sin cos 0 0 1 4 2
0 0 1 0 0 1 0 0 1 1

1 2.54
2 3.20 .

0 0 1 1 1

π π

π π

−

−

− −⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥− =⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦

⎡ ⎤− −⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎢ ⎥≈⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦

 

 
So the coordinates of the result are approximately (-2.54, 3.20).   
 
 Similarly, the reflection of a point (2, 1) through the line 2x – y + 3 = 0 can be found by 
combining three motions.  First, translate by the vector (0, -3).  This moves the y-intercept to the 
origin.  Second reflect the resulting point through the line 2x – y = 0.  Third, translate the result back 
by the vector (0, 3).  The reflection of (2, 1) in the line 2x – y + 3 = 0 is the composition of three 
isometries and can be represented by the matrix product  



  

3 4
5 5

34
5 5

3 4 12 14
5 5 5 5

3 6 174
5 5 5 5

1 0 0 0 1 0 0 2
0 1 3 0 0 1 3 1
0 0 1 0 0 1 0 0 1 1

2
1 .

0 0 1 1 1

−

−⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥− =⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦

− −⎡ ⎤ ⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥ =⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

 

Thus the reflection of (2, 1) in the line 2x – y + 3 = 0 is the point (-14/5, 17/5).   
 
 The ability to derive the translation, rotation, reflection matrices depends on the mathematical 
sophistication of the student.  For each, the student should know or be in the process of learning the 
techniques of matrix multiplication and matrix representations of a system of linear equations.  The 
high school student with a thorough knowledge of trigonometric angle sum formulas and some 
knowledge of vectors will find the derivation of the rotation matrix accessible.  The reflection matrix 
requires an understanding of (1) slope; (2) vector addition; (3) simultaneous solutions to linear 
equations.  Alternative methods of finding the reflection matrix are available and are included in the 
appendix (Appendices A and B).   The translation matrix is probably best left demonstrated for the 
high school student.  It is easy to demonstrate that it works.  Why it works is a different matter.  The 
main idea behind homogeneous coordinates is that we are operating in the three dimensional plane 
z = 1, and all shears of this form in this plane correspond to a two dimensional translation in the same 
plane.   
    
 
 

II.  Pedagogical Discussion 
 
A.  Secondary School Students 
 
 In its simplest form, this topic provides a window into the world of computer graphics for the 
high school student.  By presenting the basic isometries, a student can "move" objects around a grid 
and gain some feel for the mathematics that makes the magic of computer graphics possible.  Thus the 
exercise provides practice in matrix multiplication in an authentic context.   
 
 But the topic can provide much more than an authentic application of matrix multiplication. 
Even on the procedural level, much more can be gained.  For each constructed isometry, there is a 
homogeneous matrix representation, and vice versa.  So in the classroom setting, students can explore 
the connection using any transformational geometry construction method: a reflecting tool, paper 
folding, or dynamical geometry software.  The student could plot the coordinates of the vertices of a 
polygon, construct a transformation, and predict the approximate coordinates of the image.  The exact 
coordinates could also be computed using homogeneous coordinates and matrices.  The student gains 
not only practice in matrix multiplication, but also skill with the construction instrument.     
 
 On the conceptual level, the student can experience transformations as functions.  Discussions 
of domain, range, and comparisons with single valued functions are appropriate in this setting.  One 
discussion point, for example, is the idea that function composition can be represented by matrix 
multiplication in this setting.  Students can also experience a sense of connection between the 
geometric and algebraic representation of a transformation, just as they experience the connection 
between a function of one variable and its graph. 



 
 In addition, if the student is allowed to investigate how the isometry matrices are formed, a 
deep and rich set of connections can be discovered.  Considerations of angle addition formulas, 
positive and negative angles of rotation, slope, standard form of a line, slope-intercept form, slope of a 
perpendicular line, the distance formula can be employed immediately as one begins to investigate the 
origins of the matrices involved.   
 
B.  Pre-service and in-service teachers. 
 
 After the topics in part A have been addressed, university students in a linear algebra course 
can place these transformations in the context of the full range of transformations in space.  
Homogeneous coordinates do in fact represent points in the plane z = 1, and homogeneous matrices are 
special cases of transformation matrices in three dimensions.   
 
 For three dimensional objects, homogeneous coordinates are analogous to the two dimensional 
case.  Three dimensional points (x, y, z) are extended to (x, y, z, 1) and the homogeneous matrix for an 
isometry in three dimensions is extended to a 4x4 matrix.  In computer graphics, the three dimensional 
movement is followed by a projection matrix to the flat screen.   
 

III. Lesson reports and student work 
 
A.  Fall semester 
 
 The topic was presented as a project topic in an Introduction to Mathematica course in the fall 
of 2001.  The expected length of the project was six weeks.  In that time, students were to read and 
understand the mathematical concepts involved (see Appendix A), and then use their knowledge of 
matrix manipulation and animation in Mathematica to produce a program which would perform the 
reflection, translation, and rotation isometries.  Two teams accepted the project.  The first team 
consisted of two in-service secondary math teachers, and the second team consisted of two 
undergraduate math education majors. Both projects have been included as part of the outcome of the 
teaching experiment. 
 
 The first team of in-service teachers grasped the mathematical concepts of the project early on, 
and proceeded to develop a program which would demonstrate the three types of isometries.  Their 
main concerns were with programming in Mathematica.   They ended the course with a clear 
presentation that reflected a high degree of expertise in programming Mathematica, along with a clear 
understanding of isometries.  One of the teachers reported that she made the same presentation in her 
high school algebra class. 
 
 The team of undergraduates, however, did not completely understand the concepts of the paper, 
and they did not seek help in understanding.  Part of their presentation consisted of duplications of the 
paper in the text portion of the course, and applying methods not clearly understood.   
 
B.  Spring semester 
 
 The homogeneous coordinates were presented in a linear algebra course and a college geometry 
course.  In the linear algebra course, the topic was presented in one 50 minute lesson, in the context of 
studying linear transformations of the plane and space.  The majority of the class of 40 students 
consisted of computer science majors, and a few of them were enrolled in a computer graphics course.  
The lesson followed the outline of the presentation in Appendix B.   First the pre-image was plotted on 



graph paper, then traced on patty paper.  Then the patty paper was moved to the new location by 
translation, rotation, or reflection and the new coordinates were approximated.  The exact location of 
the image was found using homogeneous matrices and coordinates.  The memorable remarks from the 
computer science students were that they now understood their computer graphics material.  Some not 
taking computer graphics reported that this less theoretical, more concrete approach to linear algebra 
made the  entire course more understandable. 
 
 The same format was presented in 75 minutes in the college geometry course.  The class 
consisted of pre-service undergraduate math education majors, in-service teachers, and alternative 
certification candidates, some of which were already student teaching.  The geometry text contained a 
section on homogeneous coordinates and isometries, into which this lesson was naturally placed.  The 
extra added value of the lesson was the ease in which the concept could be presented to high school 
students using patty paper, (or dynamical geometry software, or a reflecting tool) to estimate the 
coordinates and then use homogeneous coordinates to compute the coordinates exactly.  The 
discussion, which followed, focused on the points in the secondary curriculum into which this material 
could be inserted. The in-service teachers, and one of the undergraduate students from the 
Mathematica project were also in this course.  The in-service teachers discussed that they had 
demonstrated the concept to their own students. 
 
C.  Interview with in-service teachers 
 
 After the experience in the Mathematica class, and the experience in the college geometry 
class, the in-service teachers were asked to discuss their impressions and implications for high school 
teaching. They were asked to comment on three aspects of the project: (1) the process of completing 
the project; (2) how they will demonstrate the lesson in their own classroom; (3) what lesson could 
they design for their own classes from the what they had learned.  They devised a work plan around 
their busy schedule, and used scheduled class time efficiently to meet and work on the project.  The 
project proceeded from generating the correct numbers, to graphing, animation, and colors.  They 
worked from specific examples to "generic" examples.  They broke the project into small pieces: how 
to graph a line, scaling the axes, reflecting and rotating.  Visualization in Mathematica helped them to 
check their results.  Obstacles consisted mostly of problems with programming, which was the object 
of the course.  The project goals were clear, but grew over time as they accomplished each task.  The 
professor continued to stretch the students programming ability as they worked on the project.   
 
 In their own classrooms, they demonstrated the program to their own students.  They talked 
about asking students to contribute vertices. They showed their program to their students from time to 
time as they worked on their projects.  They talked about visualization for lower level classes.  For 
upper level, they would tried to use it as a motivator, and give the students some of the matrix 
multiplications to work out.   
 
 In an advanced math class, they felt that students would not be able to do enough programming 
in Mathematica to make the project practical in that form.  They felt that they could use the LINK and 
DOWNLOAD feature to put a program into a calculator and let students use it to find images under 
transformations.  They felt that it would not be practical for students to actually write a calculator 
program themselves.  Students' difficulties with programming would interfere with the main lesson, 
thus confounding the outcome.  They also cited logistical problems such as lack of equipment in the 
classroom, and the Mathematica learning curve.  They did feel, however, that Mathematica would be 
in the classroom of the future. 
 



 
D.  Understandings gained from the teaching experiments 
 
 The undergraduates who were trying to learn matrix algebra in the context of a Mathematica  
programming course had a much more difficult time than the in-service teachers who had some 
background in linear algebra and experience with matrices in the high school curriculum.  For 
undergraduates, the programming seemed to take precedence over the concept.    The same seems to 
hold true in the secondary school context as well.  The comments from the in-service teachers were 
tempered with considerations of their (secondary) students' programming abilities.  If the students have 
too much trouble programming, then the knowledge gained from the activity will be lost.  For this 
reason, it is probably wiser to contextualize the concept of isometry in the more natural surroundings 
of a linear algebra or geometry course, for which programming is not the main focus of the activity.  In 
this way, students can focus primarily on the concepts behind isometries in the plane.   Students could 
use the programming abilities which they already have, but keep the focus on the transformational 
geometry concepts. 
 



Appendix  
 
A.  Study document for Fall semester 

 

MATRIX REPRESENTATIONS OF RIGID MOTION IN THE PLANE 

We know from the geometry of transformations that a rigid motion, or isometry, in the 

coordinate plane is a result of a composition of rotation, reflection or translation.  The NCTM 

Principles and Standards (2000, p. 314) envisions a clear and broad understanding of the connection 

between geometric transformations and their matrix representations.    

In high school they will learn to represent these transformations with matrices, 

exploring the properties of the transformations using both graph paper and dynamic 

geometry tools.  For example, students who are familiar with matrix multiplication 

could be introduced to matrix representations of transformations….  

Discussions of transformations in algebra texts frequently limit the discussion to 2x2 matrix 

representations of rigid motion.  These represent only a few reflections through lines containing 

the origin, and only rotations about the origin.  Yet when we use dynamical geometry 

applications we see reflections in arbitrary lines, rotations about arbitrary points, and 

translations by arbitrary vectors.  Such actions must have an algebraic underpinning before they 

can become computer output. 

 The following will begin with a discussion of the use of 2 x 2 matrices to represent 

limited types of reflections and rotations in the plane.  Secondly, homogeneous coordinates will 

be introduced to represent translations, as well as reflections and rotations, so that finally, we 

can develop a method of fully representing the three isometries of reflection, translation, and 

rotation in a unified way using homogeneous coordinates and matrices.    

Reflections And Rotations Using 2x2 Matrices.  As shown in the Principles and Standards (p. 314), 

2x2 matrices can be used to “move” points about in the plane by rotation and reflection, preserving 

properties of distance and angle measure, therefore congruence.  Figure 1, for example, shows the 



result of reflection of  ∆  ABD in the line y = 0.  The corresponding matrix representation of the 

reflection is 1 0
0 1
⎡ ⎤
⎢ ⎥−⎣ ⎦

, and the matrix representation of the vertices of  ∆ABD is 1 2 4
0 5 2
⎡ ⎤
⎢ ⎥
⎣ ⎦

, where the 

coordinates of A(1, 0) are written in column form as 1
0
⎡ ⎤
⎢ ⎥
⎣ ⎦

, etc.  Thus the outcome of the matrix product 

1 0 1 2 4 1 2 4
0 1 0 5 2 0 5 2
⎡ ⎤ ⎡ ⎤ ⎡ ⎤

=⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦
 

reveals the coordinates of ∆ A B D′ ′ ′  which are 1
0
⎡ ⎤
⎢ ⎥
⎣ ⎦

, 2
5

⎡ ⎤
⎢ ⎥
−⎢ ⎥⎣ ⎦

, and 4
2

⎡ ⎤
⎢ ⎥
−⎢ ⎥⎣ ⎦

, respectively.   

Similarly, rotations centered at the origin can be performed using the rotation matrix cos sin
sin cos

θ θ
θ θ

−⎡ ⎤
⎢ ⎥
⎣ ⎦

.  

For example the parallelogram ABCD can be rotated 90° about the origin to A B C D′′ ′′ ′′ ′′with 

coordinates found by  

  
0 1 1 2 5 4 0 5 7 2
1 0 0 5 7 2 1 2 5 4

− − − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦
. 

The approximate coordinates of , ,A B C′′ ′′ ′′and D′′ , respectively, are 0
1

A ⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦
′′ , 5

2
B ⎡ ⎤−

⎢ ⎥
⎢ ⎥⎣ ⎦
′′ , 7

5
C ⎡ ⎤−

⎢ ⎥
⎢ ⎥⎣ ⎦
′′ , and 

2
4

D ⎡ ⎤−
⎢ ⎥
⎢ ⎥⎣ ⎦
′′ as shown in Figure 2. 

Translations.  While rotation and reflection can be represented by 2x2 matrix multiplication, 

translation cannot.  Suppose T is a translation by vector <h, k>.  Then T would take (x, y) into 

(x+h, y+k).  For example, translating A(1, 0) by vector <2, 3> would result in (3,3)A′ .  The matrix 

representation of this translation is therefore 

1 1 2
0 0 3

3
3

T ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= +⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 

which is matrix addition, not multiplication. 



 There is a simple way, however, of unifying the three basic isometries of rotation, reflection, 

and translation under matrix multiplication.  It is to introduce the idea of homogeneous coordinates of 

points in the plane, and homogeneous matrices representing the basic isometries.   

Homogeneous Coordinates.  A homogeneous coordinate is simply a 3 x 1 column matrix formed by 

placing a 1 in the third row.  For example the point B (2, 5) which was represented by the column 

matrix 2
5
⎡ ⎤
⎢ ⎥
⎣ ⎦

 is now represented by the column matrix 
2
5
1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

.   The extension from 2x1 to a 3x1 column 

matrix would necessitate the extension of the transformation matrix to 3x3 as well.  Therefore, the 

homogeneous matrix representation of a transformation must be a specially designed 3 x 3 matrix.  The 

following example will illustrate how the extension to a 3 x 3 matrix takes place for simple rotations 

and reflections.  The 2 x 2 matrix representing a rotation in for 2x2 matrices is expanded from 

cos sin
sin cos

θ θ
θ θ

−⎡ ⎤
⎢ ⎥
⎣ ⎦

 to the 3 x 3 matrix 
cos sin 0
sin cos 0

0 0 1

θ θ
θ θ

−⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

.  It is also easy to translate the reflections 

from 2 x 2 matrices to 3 x 3 matrices.  For example, the previous reflection of the triangle ∆ABC 

would now be represented by 

1 0 0 1 2 4 1 2 4
0 1 0 0 5 2 0 5 2
0 0 1 1 1 1 1 1 1

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− = − −⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

. 

Notice that the third row does not correspond physically to a coordinate. 

 The real advantage of homogeneous coordinates and homogeneous matrices is in the 

representation of translation.  Whereas before, for example, the translation which carried (1, 0) to (3, 5) 

was represented by the matrix addition 1 2 3
0 3 3

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥+ =
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

, it can now be represented by multiplication using 

homogeneous representation. 



1 0 2 1 3
0 1 3 0 3
0 0 1 1 1

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

What happened?  The third column of the matrix incorporates the translation vector.  Now all three 

basic isometries can be represented by matrix multiplication.  Because we can now use the same 

matrix multiplication to translate points, we have the full range of possible isometries available to us 

symbolically.  We are no longer restricted to rotating  figures about the origin.    The following 

example will demonstrate how we can use matrices to rotate a figure about an arbitrary point.  

Rotation about an Arbitrary Center.   Suppose we want to rotate point B
2
5
1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 through an angle of 90° 

about the point C
4
2
1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

, as shown in figure 3  . First, translate point B by 
4
2

1

⎡ ⎤−
⎢ ⎥
−⎢ ⎥
⎢ ⎥
⎣ ⎦

 (figure 4a). 

1 0 4 2 2
0 1 2 5 3
0 0 1 1 1

− −⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

This has the effect of moving the center C of rotation to the origin. Second, rotate the result by 90° 

(figure 4b). 

0 1 0 1 0 4 2 0 1 0 2
1 0 0 0 1 2 5 1 0 0 3
0 0 1 0 0 1 1 0 0 1 1

3
2
1

− − ⎡ − ⎤ −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− = ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦
−⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥⎣ ⎦

 

Lastly, translate the figure back by 
4
2
1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 (figure 4c): 



1 0 4 0 1 0 1 0 4 2 1 0 4 3
0 1 2 1 0 0 0 1 2 5 0 1 2 2
0 0 1 0 0 1 0 0 1 1 0 0 1 1

1
0
1

− − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− = −⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 

Of course, the product of the three matrices on the left side is 
0 1 6
1 0 2
0 0 1

−⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥⎣ ⎦

, 

which is the particular transformation matrix which will rotate any point 90° about the point (4,2). In 

particular, ∆DEF  will rotate to ∆D E F′ ′ ′  as shown in Figure 5  

  Reflection Through An Arbitrary Line.  Just as we are no longer restricted to the origin as the 

center of rotation, we can also expand our capabilities for reflections.  Suppose we have the point 

(4,1)P and the line L:  3 9 0x y− + = , as shown in Figure 6.  We wish to find the reflection of P in the 

line: that is, we wish to find point P′  on the line perpendicular to 3 9 0x y− + = , which is the same 

distance from line L as P.  The following strategy will produce P: (1) find the line through P which is 

perpendicular to line L; (2) find the point of intersection, Q, of L with the perpendicular line; (3) Find 

the vector PQ
uuur

; and (4) find P′  by vector addition 2OP PQ+
uuur uuur

. 

 The line perpendicular to line L through (4,1)P  is 1 3( 4)y x− = − −  which simplifies to the 

equivalent form 3 13x y+ = . We can now find the point of intersection of the line and its perpendicular 

by solving the system: 

3 9
3 13
x y
x y
− = −
+ =

 

to produce the intersection point (3,4)Q .   



 In the language of vectors, we now wish to add 2OP PQ+
uuur uuur

 to produce the vector OP′
uuuur

.  Using 

4,1OP =
uuur

 and 1,3PQ = −
uuur

, we find 2,7OP′ =
uuuur

, which corresponds to the correct reflection of point 

P in the line L.  

 We can do the same as above in the general case, beginning with the line 0Ax By C+ + = and 

the point 0 0( , )P x y .  The line through P  perpendicular to 0Ax By C+ + =  is the line 

0 0( )B
Ay y x x− = − , or equivalently 0 0Bx Ay Ay Bx− + = − . Solving  

0 0

Ax By C
Bx Ay Ay Bx

+ = −
− + = −

 

yields the point of intersection 
2 2

0 0 0 0
2 2 2 2( , )B x ABy AC ABx A y BC

A B A B
Q − − − + −

+ +
.  Vectors PQ

uuur
 and OP

uuur
take on the following 

forms: 
2 2

0 0 0 0
2 2 2 2,A x ABy AC ABx B y BCPQ

A B A B
− − − − − −

=
+ +

uuur
,   0 0,OP x y=
uuur

.  So the vector 

representation of the reflection is 2OP OP PQ′ = +
uuuur uuur uuur

.  Therefore, 

2 2 2 2
0 0 0 0

2 2 2 2

( ) 2 2 2 ( ) 2,B A x ABy AC ABx A B y BCOP
A B A B

− − − − + − −′ =
+ +

uuuur
. 

 We can write the x and y coordinates of  P′ in equation form: 

2 2

2 2 2 2 2 2

2 2

2 2 2 2 2 2

22
0 0

22
0 0

ACB A AB
A B A B A B

BCAB A B
A B A B A B

x x y

y x y

−
+ + +

− −
+ + +

= − −

= + −
 

 

from which we can produce the matrix multiplication representation of P′ .   

2 2

2 2 2 2 2 2

2 2

2 2 2 2 2 2

22
0

22
0

10 0 1

ACB A AB
A B A B A B

BCAB A B
A B A B A B

x
P y

−− −
+ + +

−− −
+ + +

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥′ = ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦⎢ ⎥⎣ ⎦

. 

Using this form, the reflection matrix for the line L: 3 9 0x y− + =  (Figure 6) is 
3 94

5 5 5
3 274
5 5 5
0 0 1

−

−

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

.  The 

reflection of (4, 1) in line L is computed by matrix multiplication: 



3 94
5 5 5

3 274
5 5 5

0 0 1

4 2
1 7
1 1

−

−

⎡ ⎤
⎢ ⎥ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎢ ⎥
⎣ ⎦

. 

 Using these forms, we can now (1) rotate a figure about any point in the plane, (2) translate by 

any vector, and we can (3) reflect through any line in the plane with the ease of matrix multiplication.  

Therefore any constructed isometry in the plane can be represented algebraically using homogeneous 

coordinates. 
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Figure 1:  Reflection in the line y = 0 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2:  90°  Rotation about the origin. 
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Figure 3:  Center of rotation C ( 4, 2) 
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Figure 4:  (a) Translation,  (b) Rotation,  (c)  Translation. 
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−⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

  

 
   
 
Figure 5.  Rotation of ∆ DEF about D(4, 2) 
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3 94
5 5 5
3 274
5 5 5

4 2
1 7

0 0 1 1 1

−

−

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

 

 
 
 
 
 
Figure 6.  Reflection of P in line L:  x – 3y + 9 = 0 
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B.  Lesson Activities for Spring semester. 
 

REFLECTION IN THE X-AXIS 
 

Plot the points A(2,1), B(5,1), and C(4,3) on the grid 
shown.  
 
Then reflect ABC�  in the x-axis.  What are the 
reflected points?  [A'(2, -1), B'(5, -1), and C'(4, -3).] 
 
So if P is a generic point in the plane, what are the 
coordinates of the reflected point P'? 
x x
y y
′ =
′ = −

 

or 
1 0
0 ( 1)

x x y
y x y
′ = ⋅ + ⋅
′ = ⋅ + − ⋅

 

so 
 

1 0
0 1

x x
y y
′⎡ ⎤ ⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥ ⎢ ⎥′ −⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

 

Notice that each point (x, y) is represented by the column matrix 
x
y
⎡ ⎤
⎢ ⎥
⎣ ⎦

 

Notice also that the three reflections 

 
1 0 2 2
0 1 1 1
⎡ ⎤ ⎡ ⎤ ⎡ ⎤

=⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦ ⎣ ⎦
, 

 
1 0 5 5
0 1 1 1
⎡ ⎤ ⎡ ⎤ ⎡ ⎤

=⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦ ⎣ ⎦
,  

and  
1 0 4 4
0 1 3 3
⎡ ⎤ ⎡ ⎤ ⎡ ⎤

=⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦ ⎣ ⎦
 

 
could be consolidated into one matrix multiplication  
 

 
1 0 2 5 4 2 5 4
0 1 1 1 3 1 1 3
⎡ ⎤ ⎡ ⎤ ⎡ ⎤

=⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦
. 

 
So we can describe the reflection of ABC�  in the following way: 
 

 [ ] [ ]1 0
| | ' | ' | '

0 1
A B C A B C⎡ ⎤

=⎢ ⎥−⎣ ⎦
,  

where A, B and C are columns which represent the vertices of  ∆ ABC. 
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 ROTATIONS 
 

 
 
 

 
Use patty paper to copy the "protractor" above.  Trace ∆ ABC below and then rotate the triangle 60° 
and estimate the coordinates of the vertices.   
 

The matrix 
cos sin
sin cos

θ θ
θ θ

−⎡ ⎤
⎢ ⎥
⎣ ⎦

will rotate a figure through a positive angle θ centered at the origin.  For 

example, a 60° rotation about (0,0) will result in a matrix  
31

2 2

3 1
2 2

⎡ ⎤−
⎢ ⎥
⎢ ⎥⎣ ⎦

and a rotation of ∆ ABC will 

look like: 
 
 

3 2 3 5 3 4 3 31
2 2 2 2 2

3 2 3 1 5 3 1 4 3 31
2 2 2 2 2

2 5 4
1 1 3

− − −

− − +

⎡ ⎤ ⎡ ⎤− ⎡ ⎤
=⎢ ⎥ ⎢ ⎥⎢ ⎥

⎣ ⎦⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
 , which, with a hand held calculator, you can 

approximate and plot as 
0.1 1.6 0.6
2.2 4.8 5

−⎡ ⎤
⎢ ⎥
⎣ ⎦

. 

 
TRANSLATIONS 

 
 Notice that the rotations and reflections we have encountered so far leave the origin (0, 0) 
fixed.   Any 2x2 matrix will leave the origin fixed.  So it's impossible to represent a translation with  
2x2 matrix multiplication.  We can get around this problem, however, if we take a "slice" of three 
dimensional space, and represent our points on the plane z = 1.  So now we will continue with 
representing translations, rotations, and reflections using 3x3 matrices and 3x1 representations of 
points, in the plane z = 1. 
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HOMOGENEOUS COORDINATES AND MATRICES 
 
 
To achieve a complete representation of isometries in the plane, we expand the representations of 
points, the  rotation and reflection matrices we have found so far,  and introduce a very nice 
representation of translations in the plane. 
 
Points in the Plane 

Represent each point 
x
y
⎡ ⎤
⎢ ⎥
⎣ ⎦

 as the 3x1 column matrix 
1

x
y
⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

.  So, for example, 

A(2,1) is represented by 
2
1
1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

,  B(5,1) is represented by 
1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

, and C( 4,3) is represented by 
1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

. 

 
Reflections 

Reflection in the x-axis:  
1 0
0 1
⎡ ⎤
⎢ ⎥−⎣ ⎦

 is expanded to  the 3x3 matrix
1 0 0
0 1 0
0 0 1

⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥⎣ ⎦

 

Reflection in the y-axis: 
1 0

0 1
−⎡ ⎤
⎢ ⎥
⎣ ⎦

 is expanded to the 3x3 matrix 
0
0

0 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

. 

Reflection in the line y = x: 
0 1
1 0
⎡ ⎤
⎢ ⎥
⎣ ⎦

 is expanded to 
0
0

0 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

. 

 
Rotations: 

A rotation 
cos sin
sin cos

θ θ
θ θ

−⎡ ⎤
⎢ ⎥
⎣ ⎦

 is similarly expanded to 
0
0

0 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 
Translations 
Translations have no 2x2 matrix multiplication representation, because every translation matrix would 
necessarily move each point in the plane the same distance, and we know that matrix multiplication 
leaves the origin (0, 0) fixed.  But we can represent translations with 3x3 matrices.   
A translation which moves each point a distance (h, k), for example, can be represented by the matrix  

 
1 0
0 1
0 0 1

h
k

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

. 



TRANSLATIONS  
 
For example, to translate ∆ ABC by (-5, 4) 
graphically.  
First, use patty paper to trace   ∆ ABC: A(2,1), 
B(5,1), and C( 4, 3), AND the origin (0,0). 
 
Then, without rotation,  move each point by (-5, 4),  
so that the origin (0, 0) is mapped to the point (-5, 4). 

 
and the new triangle ∆ A'B'C' will have coordinates 
A'(-3,5), B'(0, 5), and C'(-1, 7) respectively.   
 
 
 
 
 
 
 

 
 
If we multiply the old coordinates by the translation matrix: 
 

1 0 5 2 5 4
0 1 4 1 1 3
0 0 1 1 1 1 1 1 1

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

 
we can compute the new vertices. 
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ROTATION ABOUT AN ARBITRARY POINT 

 
 

 
 
 
 

 
Use another copy of your patty paper "protractor." Place the center of rotation at the point (-2, -5) and 
copy the triangle.  Rotate 60° about the point D(-2, -5).  Estimate the coordinates of the rotated triangle 
∆ A'B'C'.  Copy your rotated triangle on the grid.   
 
The matrix of rotation is a product of three simple movements.  First, we move the center of rotation, 
D to the origin, (0,0).  Second, we then rotate the figure 60° about the origin.  Third, we move the 
center of rotation back to point D(-2, -5). 
 
First:  Translate your figure by (2, 5).  This will move point D to the origin.  Note the coordinates of 
the triangle vertices:  A' (   ,   ),  B' (    ,    ), and C' (    ,      ).  Now use the translation matrix to 
compute the same coordinates 
 

1 0 2 2 5 4
0 1 5 1 1 3
0 0 1 1 1 1 1 1 1

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

translates ∆ ABC and the center of rotation D so that the center 

of rotation is the origin, (0,0). 
 
Next,  rotate the figure 60° about the origin.  Estimate the coordinates of the vertices again, and 
compute :  
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31
2 2

3 1
2 2

0 4 7 6
0 6 6 8

0 0 1 1 1 1 1 1 1

3.2 1.7 3.9
6.5 9.1 9.2

1 1 1

⎡ ⎤− ⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦
− − −⎡ ⎤
⎢ ⎥≈ ⎢ ⎥
⎢ ⎥⎣ ⎦

  

rotates the new triangle 60°  about (0,0). 
 
Lastly, we will translate the center back to D(-2, -5), using the translation matrix 

7 3
2 2

7 3 7 3
2 2

2 3 3 3 3 3 4 3 3 3 3 3 1 4 31 0 2
0 1 5 2 3 3 3 3 3 4 2 3 2 2 3 3 1
0 0 1 1 1 1 1 1 1

5.2 3.7 5.9
1.5 4.1 4.2

1 1 1

⎡ ⎤ ⎡ ⎤− − − − − −−⎡ ⎤ ⎢ ⎥ ⎢ ⎥⎢ ⎥− + + + = − − −⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
− − −⎡ ⎤
⎢ ⎥≈ ⎢ ⎥
⎢ ⎥⎣ ⎦

, 

 
 which produces the desired rotation. 
 

In general, then, a rotation about any point D(h, k) through an angle θ can be accomplished by the 
product of three matrices: 

1 0 cos sin 0 1 0
0 1 sin cos 0 0 1
0 0 1 0 0 1 0 0 1

h h
k k

θ θ
θ θ

− −⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

In our case, 

3 5 33 11
2 2 22 2

3 3 51 1
2 2 2 2 2

101 0 2 1 0 2
0 1 5 0 0 1 5 3
0 0 1 0 0 1 0 0 1 0 0 1

− −− ⎡ ⎤⎡ ⎤ −−⎡ ⎤ ⎡ ⎤ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥− = −⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 

 



REFLECTION IN AN ARBITRARY LINE: Ax + By + C = 0,  A>0 

The line in this example has the equation  
2 3 0x y− + = , and our same triangle, ∆ ABC, 
is shown. 

Trace the line, the x-intercept, the y-intercept, 
and the triangle on a sheet of patty paper.  
Carefully turn the patty paper over and let the 
line fall back on itself, matching the x- and y-
intercepts.  Trace the reflected triangle, and 
estimate the coordinates of the vertices. 

A' (    ,     ),   B' (       ,      ),   C'(       ,      ) 

 

 

 

 

 

There are several ways of finding the reflection in an arbitrary line.  We will use two observations 
about lines: 

First observation:  The slope of the line is –A/B.  The angle of intersection, θ, of the line with the x-

axis has the property tan θ = -A/B.  So 
2 2

sin A
A B

θ =
+

,  
2 2

cos B
A B

θ −
=

+
.   

Second observation:  A non-vertical line has a y-intercept, -C/B.   

So we will use a series of moves to reflect the ∆ ABC in the line 2 3 0x y− + = . 

First,  translate  the y-intercept, (0, 3) to the origin (0,0) :  
1 0 0 2 5 4 2 5 4
0 1 3 1 1 3 2 2 0
0 0 1 1 1 1 1 1 1

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− = − −⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

 

Next, use patty paper to rotate by -θ so that the reflecting line is horizontal, and on the x-axis.  
Estimate the coordinates of  the rotated triangle.  A'(     ,      ),  B'(       ,       ) ,  C' (         ,       ) 

Note that 1
5

cosθ = ,  and  2
5

sinθ = , so the rotation matrix is:

1 2
5 5

2 1
5 5

0

0

0 0 1

−

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

.   
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And  

 

 

Now  

 

the reflecting line is the x-axis.  So use the reflection
1 0 0
0 1 0
0 0 1

⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥⎣ ⎦

 to reflect the triangle over the line: 

 

 

 

 

 
 
Now reverse the rotation and the translation: 
 
 
 
 
 
 
 
Essentially, the transformation matrix that produces the reflection across the line Ax+By+C = 0, A>0, 
is: 

[Translation by (0, C/B)]-1[Rotation by -θ ]-1
1 0 0
0 1 0
0 0 1

⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥⎣ ⎦

[Rotation by -θ ] [Translation by (0, C/B)]. 

 

For our line 2x – y + 3 = 0,  that matrix would be:  

3 4 12
5 5 5

3 64
5 5 5

0 0 1

− −⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 

1 2 2 1 4
5 5 5 5 5

6 82 1 12
5 5 5 5 5

0 2 5 4
0 2 2 0

1 1 10 0 1 1 1 1

0.9 0.4 2
3 5 4
1 1 1

−

− −− −

⎡ ⎤ ⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥− − =⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦

−⎡ ⎤
⎢ ⎥≈ − − −⎢ ⎥
⎢ ⎥⎣ ⎦

2 1 4 2 1 4
5 5 5 5 5 5

6 8 6 812 12
5 5 5 5 5 5

1 0 0
0 1 0
0 0 1 1 1 1 1 1 1

0.9 0.4 2
3 5 4
1 1 1

− −

− −−

⎡ ⎤ ⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥− =⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

−⎡ ⎤
⎢ ⎥≈ ⎢ ⎥
⎢ ⎥⎣ ⎦

1 2 2 1 4 2314 12
5 5 5 5 5 5 5 5

6 8 17 29 312 1 12
5 5 55 5 5 5 5

01 0 0
0 1 3 0
0 0 1 1 1 10 0 1 1 1 1

− − −− −⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ =⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦


