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Introduction

Dick Stanley and Pat Callahan have developed an approach to teaching mathematics to
prospective and practicing high-school teachers that involves taking a simple problem,
examining and comparing multiple solutions and generalizing the problem in numerous
ways, [1]. They pay careful attention to the different representations (numerical, algebraic,
geometric, etc.) that are employed in different contexts and the ways in which they are
systematically related to one another. Their approach often demands a lot of patience,
yet it seems successful in cultivating habits of mind that mathematicans value but which
often seem missing from high school math.

The “evaporation problem” is a typical example:

A solution of salt in water is 99% water. What proportion of
the water must evaporate in order for the percentage of water
to decrease to 98%?

The problem can be represented in a number of different ways. The most naive stu-
dents find it useful to make a table showing various quantities and percentages. Other than
the numerical approach, there are some simple ad hoc ways of representing the problem
that give the solution very quickly. Example: “We must double the concentration of salt,
so we need to cut the total amount of solution in half. Thus, 50/99 of the water originally
present must go.”

Algebraic solutions in which the quantities involved become variables and in which
the problem is rephrased by means of equations are the natural and expected approach for
mathematically mature students. The algebraic approach leads to generalizations in which
the amount of salt, the amount of water removed and the initial and final concentrations
of salt all become variables. Any given concrete instance of the problem, then, corresponds
to a consistent choice of values for the four variables. Such a choice is a point on the
two-dimensional manifold M ⊆ R4 given by the equations:

x =
r

1 − s
and y =

s

1 − r
.

Here, we are assuming we have started with 1 unit of solution; s denotes the amount of
salt present (in the original problem, .01 units), r denotes the amount of water removed,
x denotes the proportion of water removed and y denotes the resulting concentration of
salt. Every one of the variables must be between 0 and 1, so the instances of the problem
correspond the points on M that lie inside a hypercube. Any two of the variables determine
the other two. The equations defining M have an obvious symmetry. This suggests further
generalizations involving mixtures with multiple components.
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Another good example is the car catch-up problem, which is described in detail in [2].
If I head out of town travelling at 75 miles per hour and the police begin pursuit 10 mintes
later at 85 miles per hour, how long does it take them to catch up? In the process of
generalizing, all the amounts become variables. A graphical representation of the problem
shows that it is essentially the same as the “sea-island problem”, in which we determine
the height of an off-shore peak by measuring the angle of elevation observed from two
points on the shore.

The success of the didactic method is dependent on the quality of the the initial
problem. It’s true that a good mathematical imagination can trace a path from almost
any problem into mathematically interesting territory, but it’s equally true that some
situations are just naturally very rich in opportunities. The two problems already cited
are fine examples.

Below, we present some of geometry problems that were originally suggested to us
by a device that Descartes describes in Book II of his Geometry; see page 46 of [3]. The
attraction of these problems is that they can be represented in a very simple physical device
that anyone can make from two sheets of paper. Yet they have profound mathematical
connections. Indeed, the third problem has proved beyond our immediate ability to solve.

As the title of this paper suggests, this is not a classroom-ready lesson-plan. Our
intention here is to describe some geometry problems that can easily be posed to high-
schoolers, which can be solved by high-school methods yet which have profound connections
with deeper, more advanced math. We hope that others might use this as a first step toward
the development of a set of activities that would be useful in the professional training of
high-school teachers or even in developing some high-school curriculum.

A geometry problem
Draw x- and y-axes on a piece of paper and label the origin A. Take another sheet of paper
with two edges that form a right angle at corner B. Place the second sheet on the first so
that: i) B is in the first quadrant, ii) the first edge extending from B passes through A
and iii) the other edge extending from B passes through the positive x-axis. Let C denote
the point where the second edge and the x-axis meet.

Question 1. Retaining the three conditions, how do we move B so that C remains fixed?

This can be answered by means of a theorem attributed to Thales. Let AC be a
diameter of a circle γ and let B be a point distinct from A and C. If B is on γ, then
6 ABC is right. Thales’ Theorem has a converse, which is not hard to demonstrate: if
6 ABC is right, then B is on γ. The converse of Thales’ Theorem provides an immediate
answer to Question 1 is: B moves on the circle with diameter AC.

Question 1 can also be addressed algebraically. Let x and y be the coordinates of B,
i.e., B = P (x, y). By any of several methods, it can be deduced that

C = ((x2 + y2)/x, 0).

For example, let D := (x, 0) be the base of the altitude of 4ABC from B. Then |DC|/y =
y/x, so |DC| = y2/x and hence |AC| = (x2 + y2)/x. The condition that C remains fixed
is:

(x2 + y2)/x = 2k , k constant. (1)
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This is equivalent to:
y2 + (x − k)2 = k2,

which means that B = P (x, y) lies on the circle with diameter AC. For future reference,
note that when we differentiate (1) we get:

dy

dx
=

−(x2 − y2)
2 x y

. (1′)

Question 2. Retaining the three conditions, how do we move B so that C moves as
rapidly as possible? (This can be rephrased more precisely as follows. View the position of
B as a function of time B(t). We want to find the particular function B0 that maximizes
the ratio of speeds |C ′(t)| / |B′(t)|.)

We’ll appraoch this problem first by means of calculus. After this, we’ll describe an
elementary geometric solution. Assume that B moves at unit speed, so B′ = (x′, y′) =
(cos θ, sin θ), where θ depends on t. We want to find the path that B must follow to
maximize the speed of C:

|C ′| =
∣∣∣∣
(x2 − y2) x′ + 2 x y y′

x2

∣∣∣∣ =
∣∣∣∣
(x2 − y2) cos θ + 2 x y sin θ

x2

∣∣∣∣ .

The extereme points of the function f(θ) := a cos θ + b sin θ occur when tan θ = b/a, and
thus |C ′| has its extreme values when tan θ = 2 x y

x2−y2 . Since tan θ is the slope of the tangent
line to the trajectory of B, to maximize the speed of C, B should move on a trajectory so
that

dy

dx
=

2 x y

x2 − y2
. (2)

Comparing to (1′), we see that this means that B should move in a direction perpendicular
to the path that would leave C fixed. To solve this differential equation, set y = xw, and
this becomes

x + x
dw

dx
=

2w

1 − w2
,

which simplifies to
1
x

=
1 − w2

w(1 + w2)
dw

dx
.

Integrating, and assuming x and y positive

ln x + C = ln
w

1 + w2
,

or
Kx =

w

1 + w2
=

xy

x2 + y2
.

Seting 2k = 1/K, this simplifies to

x2 + (y − k)2 = k2.
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Thus, the trajectory is along a circle with center on the y-axis.

Like Question 1, Question 2 can be addressed by means of an elementary geometric
argument. Let E denote the center of the circle through A, B and C. E is the point
where the perpendicular bisector of AB meets AC. To maximize the speed of C is to
make the radius of this circle increase as rapidly as possible. To do this, B should move
parallel to EB. With a little algebra, one can show that the slope of EB is 2 x y

x2−y2 , so
this provides another way to demonstrate that (2) is a necessary condition. Of course,
this only describes the local condition that the maximizing trajectory must follow. To find
the global solution, we need a more powerful argument. Let F be the point where the
perpendicular bisector of AB meets the y-axis, and let M be the midpoint of AB. Then,
4AME ∼= 4BME and 4AMF ∼= 4BMF . It follows that 6 FBE is right. Thus, if B
travels along the cirle with fixed center F , its direction will always be orthogonal to the
circle through A, and the moving points B and C.

For dessert, here is a question that I am not presently able to answer:

Question 3. If B moves at constant speed, what trajectory must it follow so that C also
moves at constant speed?

One solution is clearly for B to move along a line through A. Other paths are deter-
mined by different speed ratios and initial positions.
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