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These notes summarize and supplement talk given 2/11/2004 and 16/11/2004 in the Semi-
naire Geometrie Algebrique Reele, Université d’Angers. They, and other relevant materials,
are available at my web site:

http://www.math.lsu.edu/∼madden
The goal of the work reported here is to develop a computational approach to linear systems
defined by infinitely near base conditions. The approach that I am developing depends
on concrete computations with actual polynomials and forces one to explore complicated
combinatorial structures in polynomial rings. The results I can report, insofar as they have
geometric meaning, refer to affine space. I hope, however, that insights obtained in the
manner I am proceeding might lead to generalizations.

******************************************************************************

Certain informal notational conventions will be used in these notes. We generally use X
to refer to an affine space of dimension d , while W is used to denote a space obtained
by blowing up a point in some other space. We often deal with a sequence of blow-ups.
Superscripts in parentheses–as in W (i)–keep track of how many blow-ups have been
performed. We also use such superscripts to mark symbols that refer to subsets of W (i)

or to coordinate functions in W (i) . In instances when an object is associated to several
different W (i) ’s, the superscript reflects the W (i) most relevant in context. All definitions
can be understood without reference to this convention, which is intended to serve as a
reminder only.
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1. Point sequences.

The following definition introduces the subject of these notes.

Definition. Let k be a field and let X(0) be affine d -space over k . Let π1 :W
(1) → X(0)

be the blow-up of the origin O0 ∈ X(0) , let π2 : W
(2) → W (1) be the blow-up of a

k -rational point O1 ∈ E0 := π−11 (O0) ⊆ W (1) . Suppose this is continued for n steps. We
get a sequence of blow ups

W (n) πn−→ · · · π3−→W (2) π2−→W (1) π1−→ X(0),

where

πi+1 is the blow-up of Oi ∈ Ei−1 := π−1i (Oi−1) ⊆W (i) .

A sequence of points {Oi} meeting these conditions will be called a k -rational point
sequence. (One might consider points with coordinates not in necessarily in k but only in
an extension of k . We do not need this level of generality here, however.)

For j > i + 1, let E
(j)
i ⊂ W (j) denote the proper transform of Ei ⊂ W (i+1) under

the morphism πj ◦ . . .◦πi+2 . It is consistent with this convention to let E(i+1)i denote Ei ,
and we shall use this notation occasionally.

Definition. We say that Oj is proximate to Oi (in symbols, Oj → Oi ) if Oj ∈ E(j)i .

Lemma 1.1. The proximity relation on any closed point sequence satisfies the following
conditions:

i) for all i and j , Oj → Oi implies j > i ,

ii) for all i ≥ 0 , Oi+1 → Oi , and

iii) for all j > i+ 1 ≥ 1 , Oj → Oi implies Oj−1 → Oi.

Proof . These follow immediately from the definitions. /////
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2. Coordinate tables.

Let {Oi} be a k -rational point sequence. We shall describe a canonical way to choose
affine spaces X(i) ⊆ W (i) and local coordinates in X(i) with Oi at the origin. We begin

with given coordinates x
(0)
1 , . . . , x

(0)
d in X(0) with O0 at the origin. Let

A(0) := k[x(0)1 , . . . , x
(0)
d ]

be the (k -rational) coordinate ring of X(0) .

For convenience, we will temporarily suppress the superscripts on the x
(0)
i , writing

simply xi instead. If W
(1) is the result of blowing up O1 , we may write W

(1) as a union
of overlapping affine d -spaces:

W (1) = X
(1)
1 ∪ . . . ∪X(1)

d

Here X
(1)
j denotes the affine subset of W (1) on which the functions

x1
xj
, . . . ,

xj−1
xj

, xj ,
xj+1
xj

, . . . ,
xd
xj

2.0

are well-defined everywhere. Note that xj = 0 is the local equation of the exceptional

divisor E0 within X
(1)
j . (The facts quoted in this paragraph are more fully explained in

any standard reference on blowing up.)
We now construct X(1) and its coordinate system. Let j(1) be the least of the integers

j = 1, . . . , d for which O1 ∈ X(1)
j and set X(1) := X

(1)
j(1) . Consider the coordinates of O1

in the coordinate system (2.0), with j = j(1). Observe that 0 must occur in position j(1)
because by assumption O1 is in E0 . Observe further that when j < j(1), not all the
rational functions in (2.0) are defined at O1 , since we have assumed that j(1) is the least
index for which they are defined. Thus in X(1) , the coordinates of O1 (with respect to

(2.0)) look like: (0, . . . , 0, a
(1)
j(1)+1 . . . , a

(1)
d ) , where the a

(1)
i may be any elements of k .

Set

x
(1)
j :=

⎧⎨⎩
xj/xj(1), if j < j(1);
xj(1), if j = j(1);

(xj/xj(1))− a(1)j , if j > j(1).

Now, the functions x
(1)
1 , . . . , x

(1)
d give a coordinate system on X(1) with O1 at the origin.

Let A(1) := k[x(1)1 , . . . , x
(1)
d ] . Writing xI in place of x(1) , our definitions imply:

xj :=

⎧⎨⎩
xIj(1)xIj , if j < j(1);
xIj(1), if j = j(1);

xIj(1)
D
xIj + aIj

i
, if j > j(1),

which gives the homomorphism from A(0) to A(1) explicitly.
From this point, we can proceed exactly as we did in passing from A(0) to A(1) to

make A(2) . Continuing, we construct a sequence of ring embeddings
A(0) → A(1) → A(2) → · · · .
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The data that we thus develop is uniquely determined by the point sequence {Oi} and
the original coordinate system chosen for X(0) .

We introduce one additional bit of useful notation. Let

εn := x
(i+1)
j(i+1) ∈ A(i+1). 2.1

Then, εi = 0 is the local equation for the exceptional divisor Ei in X
(i+1) .

Coordinate tables provide a convenient way of recording the data that determines the
sequence {A(i)} . Here is how to construct them. If i W= j(i), then we have specified how
to choose a

(i)
j ∈ k , above. (We take a(i)j = 0 when i < j(i).) We have not specified a

meaning for a
(i)
j(i) , however. We shall simply set

a
(i)
j(i) := ∗ , 2.2

where ∗ is a symbol not in k . The asterisk is nothing more than a notational device whose
position indicates the value of j(i).

The matrix {a(i)j } is called a coordinate table for {Oi} . We shall write these tables
with the i -index constant along rows, e.g.,

− − − − | O0
|

0 0 ∗ a
(1)
4 | O1

|
0 ∗ a

(2)
3 a

(2)
4 | O2

|
∗ a

(3)
2 a

(3)
3 a

(3)
4 | O3

|
0 0 ∗ a

(4)
4 | O4 .

Here, we have drawn a coordinate table with an extra column appended on the right, in
which we name the point whose coordinates appear in the same row.

The proximity relations of {Oi} may be determined from the position of the asterisks
and zero entries in any coordinate table, as the following shows.

Lemma 2.1. Let {a(i)j } be a coordinate table of a k -rational point sequence {Oi} . Then
On → Os if and only if n = s+ 1 or n > s+ 1 and 0 = a

(s+2)
j(s+1) = . . . = a

(n)
j(s+1) .

Proof . Since {Qi = Os+i} is a k -rational point sequence, it is enough to prove the
lemma under the assumption that s = 0. If 0 = a

(2)
j(1) = . . . = a

(n)
j(1) , then j(1) does not

occur among the indices j(2), . . . , j(n) . The vanishing of these constants also shows that

E
(i)
0 ∩X(i) = V (x

(i)
j(1)) for i = 1, . . . , n . Since On is determined by x

(n)
1 = . . . = x

(n)
d = 0,

we see On ∈ E(n)0 , i.e., On → O0 . To prove the other implication, we use induction. The
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n = 1 case is obvious. Suppose n > 1 and On → O0 . By Lemma 1.1.iii , On−1 → O0
so by induction 0 = a

(2)
j(1) = . . . = a

(n−1)
j(1) . It follows that E

(n−1)
0 ∩X(n−1) = V (x(n−1)j(1) ).

Now j(n) = j(1) is impossible, because this implies E
(n)
0 ∩ X(n) = ∅ , but we assumed

On ∈ E(n)0 ∩X(n) . Thus, E
(n)
0 ∩X(n) = V (x

(n)
j(1)+ a

(n)
j(1)) . Since by hypothesis On belongs

to this set, a
(n)
j(1) = 0. /////

For example, suppose the following coordinate table is given:

− − − − | O0
0 0 ∗ 1 | O1
0 ∗ 0 0 | O2
∗ 0 0 0 | O3
0 ∗ 1 1 | O4
0 ∗ 1 0 | O5
0 0 0 ∗ | O6
0 ∗ 0 0 | O7 .

The proximities determined by this table are given by the following table:

indices of points
i proximate to Oi
− −−−−−−−
0 1, 2, 3
1 2, 3
2 3, 4, 5, 6, 7
3 4
4 5, 6
5 6, 7
6 7 .

Corollary. In addition to conditions i) — iii) of Lemma 1.1, the proximity relation on
any k -rational point sequence satisfies: iv ) for each j , there are at most d points Oi such
that Oj → Oi . Moreover, i) — iv ) are the only restrictions that apply. I.e., given a set

of symbols {O∗i | i = 0, 1, 2, . . .} and a relation ∗→ consistent with conditions i) — iv ),
there is a k -rational point sequence {Oi | i = 0, 1, 2, . . .} such that Oj → Oi if and only

if O∗j
∗→ O∗i .

Proof . Condition iv ) follows from the fact that there are only d choices for j in {a(i)j }
and that for each i an entry of the form a

(i)
j(i) = 1− x(i−1)j(i) must occur. As to the second

statement, given a relation satisfying (i — iv), it is easy to construct a coordinate table
realizing that relation. /////
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3. Virtual transforms and strict transforms.

Let {Oi} , i = 0, . . . , n , be a k -rational point sequence, {a(i)j } a coordinate table for
{Oi} . Let x(i)1 , . . . , x(i)d be the coordinates about Oi determined by the table as in the

previous section and let A(i) := k[x(i)1 , . . . , x(i)d ] .
Here is some new notation that we will use frequently. For each i , let S(i) be a copy

of Zd and let S
(i)
+ be the submonoid Nd of S(i) . If α ∈ S(i) , then |α| := α1 + · · ·αd .

If f =
�
cαx

(i)α ∈ A(i) , then supp(i)(f) := {α ∈ S(i) | cα W= 0 } . This set is called the
support of f . The order of f at Oi , denoted ord(i, f) , is min{ |α| | α ∈ supp(i) } .

Let m(i) denote the ideal in A(i) consisting of all polynomials that vanish at Oi .
Thus m(i) consists of all polynomials in the variables x

(i)
1 , . . . , x

(i)
d with zero constant

term, and (m(i))f consists of all polynomials with order at least f . Note that ord(i, f) :=
max { f | f ∈ (m(i))f } and that that

ord(i, f) ≥ m ⇐⇒ ∃g ∈ A(i+1) such that f = εmi g. 3.1

Thus for any f ∈ A(i) , there is g ∈ A(i+1) \ εiA(i+1) (i.e., g is not divisible by εi ) such
that

f = ε
ord(i,f)
i g. 3.2

Definition. Suppose f ∈ A(s) . Given a sequence of integers ν = {νs, νs+1, . . .} , we define
the virtual transforms of f , V

(i)
s (ν, f) , for i ≥ s as follows:

V (s)s (ν, f) : = f ,

V (i+1)s (ν, f) : = ε−νii V (i)s (ν, f)

= ε−νii ε
−νi−1
i−1 · · · ε−νss f.

3.3

V
(i)
s (ν, f) may fail to belong to A(i) , but obviously V (i)s (ν, f) is always in the fraction

field of A(i) . If V (i)s (ν, f) ∈ A(i) and the condition

νi ≤ ord(i, V (i)s (ν, f))

is satisfied, then V
(i+1)
s (ν, f) is in A(i+1) , by 3.2. If this condition is satisfied for i =

s, . . . , n , we say that f satisfies the infinitely near base condition {Oi, νi}ni=s . In the next
section, we examine the set of all f satisfying such a base condition. For remarks on the
origins of this concept and its relations to other kinds of base conditions, see [Z], page 30.

Definition. For f ∈ A(s) , the strict transforms of f are defined for i ≥ s by:

T (s)s (f) := f,

T (i+1)s (f) := ε
−µs,i(f)
i T (i)s (f),

3.4

where
µs,i(f) := ord(i, T

(i)
s (f)). 3.5
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Letting µ(f) denote the sequence {µs,s(f), µs,s+1(f), . . .} , we have

T (i)s (f) = V (i)s (µ(f), f).

Obviously, if f ∈ A(s) , then f satisfies the base condition {Oi, µs,i(f)}ni=s for any sequence
{Oi}ni=s . We say that f passes through Os, . . . , On if T (i)s (f) ∈m(i) for i = s, . . . , n . This
is equivalent to the condition

1 ≤ µs,i(f) for i = s, . . . , n.

Lemma 3.2. For any f ∈ A(s) and any i ≥ s ,

µs,i(f) ≥ µs,i+1(f) ≥ 0.

Proof . It is sufficient to prove this assuming that s = i = 0 and j(1) = 1, for all other
cases reduce to this by changing indices. For convenience, write x in place of x(0) , xI in
place of x(1) , T in place of T

(1)
0 and assume µ = ord(0, f) . Pick β ∈ supp(0)(f) such

that (β2, . . . ,βd) is a maximal element (in the component-wise order) of

{ (α2, . . . ,αd) | ∃α1 (α1,α2, . . . ,αd) ∈ supp(0)(f) & α1 + . . .+ αd = µ }.

Then cβ(x
I
2+a2)

β2 · · · (xId+ad)βd is a summand of T (f) , and no other summands involve
the monomial xI2

β2 · · ·xIdβd . Thus, ord(1, T (f)) ≤ β2 + · · ·+ βd ≤ µ . /////
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4. Multiplicities and proximity.

In this section, we show that the relationship between the numbers ord(n, f) and
µs,n(f) are completely determined by the proximity relations. Suppose a sequence {Oi}Ni=0
has been fixed. For s, i, n ∈ {0, . . . , N} , set

P (s, i) :=

F
µs+1,i(εs) if s < i
0 otherwise,

and

ω(i, n) :=
+
ord(n, εi) if i ≤ n
0 otherwise.

For reference, recall that (3.5) defines

µs,i(f) := ord(i, T
(i)
s (f)).

Proposition 4.1. Suppose 0 ≤ s < n and f ∈ A(s) . Then

P (s, n) =

F
1, if On → Os;
0, otherwise,

(i)

ord(n, f) =
n3
i=s

µs,i(f)ω(i, n), (ii)

ω(s, n) =
n3

i=s+1

P (s, i)ω(i, n). (iii)

Proof . As in the proof of Lemma 2.1, to prove (i) it suffices to treat the case s = 0. Since
P (0, 1) = µ1,1(ε0) = 1, the case n = 1 is clear. Suppose n ≥ 2. If On → O0 , then by
Lemma 2.1

T
(i)
1 (ε0) = x

(i)
j(1) for i = 2, . . . , n.

From this it is immediate that P (0, n) = 1. If on the other hand On W→ O0 , then choose

i0 , 2 ≤ i0 ≤ n , to be the least index such that Oi0 W→ O0 . Then either T
(i0)
1 (ε0) = 1 (if

j(i0) = j(1)) or T
(i0)
1 (ε0) = x

(i0)
j(1) + a

(i0)
j(1) , with a

(i0)
j(1) W= 0. In either case, P (0, i0) = 0, so

P (0, n) = 0 by Lemma 3.2.
Now we prove (ii) . From 3.4, we obtain, for f ∈ A(s) ,

f = T (n)s (f)
n−1�
i=s

ε
µs,i(f)
i .

By 2.2 and 2.3,
ω(n, n) = 1,

and thus

ord(n, f) =
n3
i=s

µs,i(f)ord(n, εi), (∗)

which is what was to be proved.
To prove (iii) , apply (∗) to f = εt−1 ∈ A(t) , and then set t = s+ 1. /////
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Corollary 4.2. Regard ω and P as square matrices of dimension N+1 , and let I denote
the identity matrix. Then

ω = (I − P )−1.
Proof . One checks easily that 4.1.iii implies ω = Pω + I . /////

Remark . Corollary 4.2 originally appears in work of Du Val. For more discussion of
this result, see [L-J] and [L2 ]. Computationally, it is trivial to create a proximity matrix
from a coordinate table. (See the collection of Mathematica programs that accompany
these notes at my web site.)

Definition. Suppose a sequence of points O = {Oi} and a sequence of integers ν = {νi}
is given. Let

I(O, ν, s, n) := { f ∈ A(s) | νj ≤ ord(j, V (j)s (ν, f)) for s ≤ j ≤ n }.

If f ∈ A(s) and f ∈ I(O, ν, s, n) , we say that f satisfies the base condition {Oj , νj}nj=s .
When O = {Oi}ni=s , we write I(O, ν) as an abbreviation for I(O, ν, s, n) .
Proposition 4.3. I(O, ν, s, n) is a complete ideal in A(s) .
Proof . From the definition of the virtual transform, we get that for any f ∈ A(s) and any
j = s, . . . n :

ord(j, V (j)s (ν, f)) = ord(j, f)−
j−13
i=s

νiω(i, j).

Thus, for j = s, . . . n :

νj ≤ ord(j, V (j)s (ν, f))⇐⇒
j3
i=s

νiω(i, j) ≤ ord(j, f).

This shows that I(O, ν, s, n) is an intersection of ordi -ideals./////

Remarks. Recall that ord(j, f) =
�j

i=0 µi(f)ω(i, j) . Thus�j
i=0 νiω(i, j) ≤ ord(j, f) for j = 0, · · · , n ⇐⇒ (µ(f)− ν)ω ∈ Nn+1

⇐⇒ µ(f)− ν ∈ (Nn+1)(I − P ).

(Here, ω = (I − P )−1 is interpreted as an n+ 1× n+ 1 integer matrix.)
In the two-dimensional case, work of Enriques and Zariski shows that I(O, ν) is an

ordn -ideal if ν0, . . . , νn is a positive sequence that is minimal (in the term-wise ordering)
among those satisfying the so-called “proximity inequalities” (see below). In this case,
I(O, ν) is the simple complete ideal in A(0) corresponding to the infinitely near point On ,
see [L-J]. In higher dimensions, I do not know the precise conditions under which I(O, ν)
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is an ordn -ideal. (In any dimension, one may easily find examples where I(O, ν) is not an
ordn -ideal.)

Also note that the ideal I(O, ν) may fail to be finitely supported. In other words, even
though I(O, ν) is determined by assigning data to finitely many points, the support of this
ideal–see [L]–may not be finite. A major question is to understand how the support of
I(O, ν) is related to the data {Oi, νi} defining it.

The chief goal of the present work is the analysis of I = I(O, ν). In particular, we
want to be able to compute dimk(I +m

s)/ms for any O , ν and s .

5. Remarks on the 2-dimensional case.

The theory of infinitely near base conditions on curves on a smooth surface was described
fully by Enriques and Chisini in [EC]. In 1938, as a testing ground for his valuation-
theoretic formulation of algebraic geometry, Zariski reformulated this theory as a theory
about valuation ideals in k[x, y] , [Z2 ]. Later, Zariski presented a generalization that
applies to arbitaray complete ideas in two-dimensional regular local rings, [ZS]. Among
the theorems that Zariski proved in this context, one of the most influential was the
unique factorization theorem for complete ideals. In the 1980s, there were attempts to
extend unique factorization to higher dimensions, but counterexamples to a straightforward
generalization were found.

Lejeune-Jalabert [L-J] and Lipman [L2 ] have pointed out that the original formualtion
of Enriques, which rested on the so-called “proximity inequalities”, remains a useful way
of looking at the theory. This actually applies to infinitely near base conditions in the
plane corresponding to trees of points rather than just sequences. We provide a summary
of the special case of Enriques’ theory that applies to the kind of point sequences that we
have been considering.

Let {Oi} be a point sequence in the plane and let {νi} be a sequence of non-negative
integers. We say that {νi} satisfies the proximity inequalities corresponding to {Oi} if:

for each i , νi ≥
3

Oj→Oi
νj.

Theorem. (See [L-J], p. 354.) For any f ∈ A(0) , if f passes through the {Oi} , then
the multiplicities µi := µ0,i(f) satisfy the proximity inequalities corresponding to {Oi} .
Conversely, if {νi} satisfies the proximity inequalities corresponding to {Oi} , then there
is f ∈ A(0) such that µ0,i(f) = νi .

The hard part of this theorem is the second statement. Later in these notes, we will
discuss this further. For the time being, we will look at some concrete implications of the
proximity inequalities. First, note that having assigned multiplicity 1 to the last point in
a sequence, the minimal multiplicities of preceeding points are determined inductively by
the relation νi =

�
Oj→Oi νj . The coordinate table provides a convenient display. In each

column below, we assigned a multiplicity of 1 to a point and 0 to all succeeding points.
The minimal multiplicities compatible with the proximity inequalities are shown:
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| | Oi
−− −− −− −− −− −− −− −− −− −− −− −−
− − | 10 6 4 2 2 2 1 1 | O0
0 ∗ | 5 3 2 1 1 1 1 0 | O1
∗ 0 | 5 3 2 1 1 1 0 0 | O2
∗ 1 | 5 3 2 1 1 0 0 0 | O3
∗ 0 | 2 1 1 1 0 0 0 0 | O4
0 ∗ | 2 1 1 0 0 0 0 0 | O5
0 ∗ | 1 1 0 0 0 0 0 0 | O6
∗ 0 | 1 0 0 0 0 0 0 0 | O7 .

It is easy to see that any multiplicity sequence that is compatible with the proximity
inequalities is a unique sum of the columns shown. This being true for any table, it follows
that:

Lemma. The set of all non-negative multiplicity sequences on {Oi | 0 ≤ i ≤ n } satisfying
the proximity inequalities forms a commutative monoid isomorphic to Nn+1 .

Zariski [Z2 ] considered the monoid of ordn valuation ideals, where the operation is
ideal multiplication. This monoid is isomorphic to the one we have just described. For a
discussion of monoids of ideas related to sequences infinitely near points in any dimension,
see [L1 ]. Additional discussion of monoids is in [L-J].

6. Exponent space and monomial transforms

The monomials form a richly structured basis for the k -vector space, k[x1, . . . , xd] . Com-
putational methods in commutative algebra that use Gröbner bases or sparse resultants
make effective use of this structure. Also, toric geometry is largely dependent upon useful
structures that can be defined in the space of monomials. My goal is to develop ways to
use monomial structures to address the problem of finding polynomials that exactly sat-
isfy given base conditions. In this quest, the first problem seems to be to develop effective
nomenclature. This section begins an exploration in that direction.

6.1. Order structure in Zd . Suppose E is a copy of Zd . Let πi : E → Z be the projection
onto the ith component. Let ≤ denote the componentwise order on E–that is, u ≤ v iff
πi(u) ≤ πi(v) (in the usual order on Z) for each i = 1, . . . , d . Let E+ := {u ∈ E | 0 ≤ u } .
Then

u ≤ x ⇔ x− u ∈ E+ ⇔ x ∈ u+E+.
The following lemma summarizes the most important facts about lower bounds of subsets
of E . The proof is easy, so we do not include it.

6.1.1. Lemma. Suppose X ⊆ E and u ∈ E . Let πi(X) := {πi(x) | x ∈ X } .
a) u is a lower bound for X ⇔ X ⊆ u+ E+ ⇔ X − u ⊆ E+ .
b) X has a lower bound in E if and only if each πi(X) has a lower bound in Z .
c) If X has a lower bound in E then X has a greatest lower bound in E .
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d) The following are equivalent:
i) γ is the greatest lower bound of X ;
ii) πi(γ) = min{πi(x) | x ∈ X } ;
iii) X − γ ⊆ E+ and X − γ includes points on each face of E+ ;
iv) the set of all lower bounds of X is γ −E+ .

e) Denoting the greatest lower bound of X by ∧X , we have ∧(u+X) = u+∧X ./////

6.2. Isomorphisms and strengthening the order. Let EI be another copy of Zd and let
φ : E → EI be a group isomorphism such that φ(E+) is properly contained in EI+
(equivalently, the matrix representing φ with respect to the standard bases in E and EI

has non-negative entries). Such a φ satisfies:

for all u, v ∈ E , u ≤ v ⇒ φ(u) ≤ φ(v).

The order on EI , however, is properly stronger than the order induced from E by φ , so
the converse is not generally true.

Suppose that B ⊆ E and set BI := φ(B). Assume B has a greatest lower bound
γ ∈ E . Then φ(γ) is a lower bound of BI in EI , so BI has a greatest lower bound in EI ,
call it γI . Clearly, φ(γ) ≤ γI in EI . When d = 2, it is also the case that γ ≤ φ−1(γI) in
E , as can be seen by an elementary diagram. However, when d > 2 this may fail.

6.2.1. Example. Let d = 3 and suppose φ(u) = u ·A , where

A =

⎧⎨⎩ 2 0 1
4 1 1
3 2 0

⎫⎬⎭ and A−1 =

⎧⎨⎩−2 2 −1
3 −3 2
5 −4 2

⎫⎬⎭ .

Also, let B = { (1, 0, 0), (0, 1, 0), (0, 0, 1) } . Then γ = (0, 0, 0) in E and φ(γ) ≤ γI =
(2, 0, 0) ∈ EI . But φ−1(γI) = (−4, 2,−1), which is not comparable to γ in E . /////

Suppose d = 2 and BI − γI = { (0, q), (p, 0) } ⊆ EI . Suppose φ(u) := u · A , where
A =

F
a b
c d

k
. We are assuming, of course, that a, b, c, d ≥ 0 and det(A) = 1. Now,

φ−1(BI − γI) = (BI − γI) ·A−1 = { q(−c, a), p(d,−b) }.

Let v := φ−1(γI)− γ . In other words, −v is the greatest lower bound of φ−1 (BI − γI) =
B − φ−1(γI) in E . From the above, we see v = (qc, pb). Note that

B − γ = φ−1(BI − γI) + v = { q(−c, a), p(d,−b) }+ (qc, pb)
= { (0, qa+ pb), (qc+ pd, 0) }.

Observing that

A ·
F
q
p

k
=

F
qa+ pb
qc+ pd

k
,

12



we have a formula that enables us to pass from data determining BI − γI to data deter-
mining B − γ .

6.2.2. Example. Let M0∗ :=
F
1 1
0 1

k
and M∗0 :=

F
1 0
1 1

k
. If φ is determined by Mk

0∗ ,

then v = (0, kp) and B − γ = { (0, kp + q), (p, 0) } . If φ is determined by Mk
∗0 , then

v = (kq, 0) and B − γ = { (0, q), (p+ kq, 0) } . /////

6.3. Sequences. We shall extend the discussion to a sequence of isomorphisms. Suppose

E(0)
φ(1)−→ E(1)

φ(2)−→ · · · φ
(n)

−→ E(n)

has been given, each satisfying φ(i)(E
(i−1)
+ ) ⊆ E(i)+ . Suppose B = B(0) ⊆ E(0) . Let B(i)

be the image of B in E(i) . Assume that B(0) has a greatest lower bound γ0 ∈ E(0) . Then
the image of γ0 in E

(i) , which we denote γ
(i)
0 , is a lower bound for each B(i) . Hence each

each B(i) has a greatest lower bound in E(i) ; we denote this γi . Of course, B
(i) − γi is

in E
(i)
+ and meets each face of E

(i)
+ . We denote the image of γi in E

(j) by γ
(j)
i . For each

j = 1, . . . , n :

γ
(j)
0 ≤ γ

(j)
1 ≤ · · · ≤ γ

(j)
j−1 ≤ γ

(j)
j (in E(j) ).

6.3.1. Definition. For i = 0, . . . , n− 1 let vi := γ
(i)
i+1 − γi . (We do not define vn .)

Note that vi ∈ E(i) . As usual, we denote the image of vi in E(j) by v(j)i . When
0 ≤ j < k ≤ n , we have:

γ
(i)
k − γ(i)j = (γ

(i)
k − γ(i)k−1) + (γ(i)k−1 − γ(i)k−2) + · · ·+ (γ(i)j+1 − γ(i)j )

= v
(i)
k−1 + v

(i)
k−2 + · · ·+ v(i)j .

In particular:

γ(i)n − γ(i)j = v
(i)
n−1 + · · ·+ v(i)j .

6.3.2. Example. We treat the case when d = 2, B(n) − γn = { (0, q), (p, 0) } and each φ(i)

is given by multiplying on the right by either M0∗ or M∗0 . (These matrices were defined
in the previous example.) The entire sequence, then, can be written as:

E(0)
M1−−→ E(n1)

M2−−→ E(n2)
M3−−→ · · · Ms−−→ E(ns) = E(n),

where each Mj =M
kj , with M being one of the matrices M∗0 or M0∗ and kj := nj−nj−1 .

(We assume that successive Mj are not powers of the same matrix.) For definiteness, let
us suppose that Ms is a power of M0∗ . The following table exhibits the B(i)−γi and the

13



vi working backwards from E(n) . We write B(i)−γi as { (0, qi), (pi, 0) } and show qi and
pi only.

i qi pi vi
−−−− −−−− −−−− −−−−
ns q p ∗ ∗ ∗

ns − 1 p+ q p (0, p)
ns − 2 2p+ q p (0, p)
...

...
...

...
ns−1 ksp+ q p (0, p)

ns−1 − 1 ksp+ q (ksp+ q) + p (ksp+ q, 0)
ns−1 − 2 ksp+ q 2(ksp+ q) + p (ksp+ q, 0)

...
...

...
...

ns−2 ksp+ q ks−1(ksp+ q) + p (ksp+ q, 0)
ns−2 − 1 pns−2 + qns−2 pns−2 (0, pns−2)

The pattern is apparent. In the interval { i | nj−1 ≤ i ≤ nj } , either qi or pi is
constant, depending on whether M0∗ or M∗0 is being applied. If pi is constant (i.e., M0∗
is being applied) then qi − qi−1 = pi , when nj−1 < i ≤ nj .

These patterns are closely related to the proximity inequalities. Indeed, let us write
an arbitrary coordinate table as below. We do not demand that all the transforms be
monomial. Mark the last row with the pair (p, q), and if a row is marked (i, j) , then mark
the preceeding row according to the following rules:

− − i+ j, j
∗ 0 i j

− − j j
∗ 1 i j

− − i i+ j
0 ∗ i j

− − i i
1 ∗ i j

Note that the last rule will not be used in tables such as we construct, but it may apply
in more general tables. The rules for the column labelled ν are stated after the table.

P Q ν
− − 14p+ 7q 8p+ 4q 8p+ 4q
∗ 0 6p+ 3q 8p+ 4q 6p+ 3q
0 ∗ 6p+ 3q 2p+ q 2p+ q
∗ 0 4p+ 2q 2p+ q 2p+ q
∗ 0 2p+ q 2p+ q 2p+ q
∗ 1 7p+ 3q 2p+ q 2p+ q
∗ 0 5p+ 2q 2p+ q 2p+ q
∗ 0 3p+ q 2p+ q 2p+ q
∗ 0 p 2p+ q p
0 ∗ p p+ q p
0 ∗ p q q .

The last entry in the ν column is the letter in the position of the asterisk. Each other
entry is the minimum of the two entries to the left.
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Lemma. In any table constructed according to the above rules, the entries in the ν
column obey the proximity equalities.

6.3.3. Example. We treat the case when d = 3 and each φ(i) is given by multiplying on
the right by one of the matrices M∗00 , M0∗0 or M00∗ . We simply exhibit the data that
accompanies an arbitrarily chosen sequence of matrices. One should think of the B(i)− γi
as the support of a trinomial. In the table below, B(0) − γ0 represents the trinomial
ax12y5 + by8z4 + cx5z8 . Note that the non-zero entry in vi is the order of B

(0) − γ0 .
The successive B(i) − γi are the proper transforms of B

(0) − γ0 along the sequence of
infinitely near points associated with the table in the leftmost column. The vi are the
minimal multiplicities with which a generic polynomial that ultimately transforms to a
generic polynomial with support B(n) − γn vanishes along the sequence.

i M (i) B(i) B(i) − γi γi vi
− −−−−− −−−−−− −−−−−− −−−−−− −−−−−−
0 − − −

4 1 −3
−8 4 1
−3 −4 5

12 5 0
0 8 4
5 0 8

−8 −4 −3 12 0 0

− −−−−− −−−−−− −−−−−− −−−−−− −−−−−−
1 ∗ 0 0

2 1 −3
−3 4 1
−2 −4 5

5 5 0
0 8 4
1 0 8

−3 −4 −3 0 9 0

− −−−−− −−−−−− −−−−−− −−−−−− −−−−−−
2 0 ∗ 0

2 0 −3
−3 2 1
−2 −1 5

5 1 0
0 3 4
1 0 8

−3 −1 −3 0 0 6

− −−−−− −−−−−− −−−−−− −−−−−− −−−−−−
3 0 0 ∗

2 0 −1
−3 2 0
−2 −1 2

5 1 0
0 3 1
1 0 3

−3 −1 −1 4 0 0

− −−−−− −−−−−− −−−−−− −−−−−− −−−−−−
4 ∗ 0 0

1 0 −1
−1 2 0
−1 −1 2

2 1 0
0 3 1
0 0 3

−1 −1 −1 0 3 0

− −−−−− −−−−−− −−−−−− −−−−−− −−−−−−
5 0 ∗ 0

1 0 −1
−1 1 0
−1 0 2

2 0 0
0 1 1
0 0 3

−1 0 −1 0 0 2

− −−−−− −−−−−− −−−−−− −−−−−− −−−−−−
6 0 0 ∗

1 0 0
−1 1 0
−1 0 1

2 0 0
0 1 0
0 0 1

−1 0 0 1 0 0

− −−−−− −−−−−− −−−−−− −−−−−− −−−−−−
7 ∗ 0 0

1 0 0
0 1 0
0 0 1

1 0 0
0 1 0
0 0 1

0 0 0
1 0 0
0 1 0
0 0 1
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