
Mathematical Foundations for the Common Core

A Course for Middle and Secondary Teachers

James J. Madden

Department of Mathematics, Louisiana State University

Topic: Expressions and Trees

An expression is a written record of a computation. On page 62 of the Common Core Standards, a
more elaborate account is given, which points out that the computations may start with numbers or
with symbols: adding 3 to 10 is a computation, but so is adding 3 to x, if x is a number. Furthermore
what is meant by a computation might be as simple as adding or multiplying, but taking the square
root of a number or taking a trigonometric function of a number or stacking numbers in repeated

exponents (as in xx
x
·

·

·

) is also a computation. Beyond this, computations can be strung together or
combined with further computations to make complex, multistep computations. When these things
are considered, it is clear that we have not yet provided a definition (in the precise mathematical
sense) of the concept of an expression. We will get to that.

Let us look at some examples. Here are 6 different expressions. Each one uses each of the numbers
from 1 to 5 exactly once and records a way of adding and/or multiplying these numbers.

a) 1 + 2 + 3 + 4 + 5

b) (1 + 2 + 3 + 4)5

c) ((1 + 2)3 + 4)5

d) (1 + 2)3 + (4 + 5)

e) 1 + 2 + 3(4 + 5)

f) (1 + 2)(3)(4)(5)

Expressions have structure. The structure of an expression can be made clear using a tree diagram:

a) 1 + 2 + 3 + 4 + 5 b) (1 + 2 + 3 + 4)5 c) ((1 + 2)3 + 4)5

Plus

1 2 3 4 5

Times

Plus

1 2 3 4

5

Times

Plus

Times

Plus

1 2

3

4

5

The expressions that we have been talking about do not have any variables in them. We call
expressions such as these numerical expressions or arithmetical expressions. Expressions such at
x + 1 or ax2 + b x + c that have variables in them are called algebraic expressions.

1



The distributive law is a rule for transforming expressions:

x (y + z) = x y + x z

Times

x Plus

y z

Plus

Times

x y

Times

x z

Complexity of Expressions

In the last lecture, we observed that an arithmetic expression is simplified by performing the
operations between numbers first. The effect of this is to work from the bottom of the tree, pulling
the leaves into the nodes directly above them. In an algebraic expression, it may be impossible to
make a modification that eliminates an operation: x+y cannot be written in a simpler form. If we
measure the complexity of an algebraic expression by the number of operation symbols in it, then
many expressions just do not simplify. However, there are modifications that reduce a different
kind of complexity.

Consider the following example:

x + x (x + x (x + x2)) = x + x (x + x2 + x3)

= x + x2 + x3 + x4

Including the multiplications implicit in the exponents, there are 6 operations in the first expression
but 9 in the last. In terms of alternations between additions and multiplications, however, the
last expression is much simpler. To explain what is meant, we need to analyze the structure of
expressions more carefully.

Let us represent the sum of several inputs x1, x2, . . . , xn by Plus[x1, x2, . . . , xn]. The inputs may
be constants, variables, or the outputs of other operations. We will assume that none of the
inputs to Plus are outputs of addition, since any Pluss that occur as heads of inputs to Plus are
redundant (e.g., Plus[a, Plus[y, z]] = Plus[x, y, z]). The analogue is true of multiplication. Let us
represent the product of several inputs x1, x2, . . . , xn, which again may be constants, variables, or
the outputs of any operations other than multiplication, by Times[x1, x2, . . . , xn].

Any polynomial expression can be written using Plus and Times in conformity with the rules
we have just stated, together with the minus-sign to denote the operation of taking the additive
inverse. For example:

1 + x + x2 = Plus[1, x, Times[x, x]];

(x + 1)(y − 2) = Times[Plus[x, 1], Plus[y,−2]]];

2



x y + (1 + x)(x y + (x + 1)2) =

Plus[Times[x, y], Times[Plus[1, x], Plus[Times[x, y], Times[Plus[x, 1], Plus[x, 1]]]]].

We can reveal the structure of a polynomial expression by writing it with Timess and Pluss
and then deleting all the constant and variable symbols and minus signs and retaining only such
commas and brackets as are needed to group occurrences of Plus and Times. For example, the
three polynomials above yield Plus[Times], Times[Plus, Plus] and

Plus[Times, Times[Plus, Plus[Times, Times[Plus, Plus]]]]].

Any Times (respectively, Plus) other than the head of the entire expression appears as an ar-
gument of some Plus (respectively, Times), which we say is immediately above it . We call an
Plus or an Times a terminus if it does not have an Times or and Plus below it. From any ter-
minus, we can read upwards to the head of the whole expression, or from the head we can read
downward to a terminus. (Going up means going outside of brackets, going down means going
inside.) If we read from the head to a terminus, we get a branch. For example, the branches
in Plus[Times, Times[Plus, Plus[Times, Times[Plus, Plus]]]]] are PlusTimes, PlusTimesPlus, and
PlusTimesPlusTimes and PlusTimesPlusTimesPlus. Clearly, every branch is an alternating
sequence of Pluss and Timess. The Times-Plus-complexity of an expression is the number of
TimesPlus s in the longest branch.

The distributive law transforms any expression of the form Times[Plus[· · ·], · · · , Plus[· · ·]] into an
expression of the form Plus[Times[∗ ∗ ∗], · · · , Times[∗ ∗ ∗]]. For example:

(u + v)(w + x)(y + z) = uwy + uwz + uxy + uxz + vwy + vwz + vxy + vxz.

Thus, the distributive law reduces the the Times-Plus-complexity of any expression with head
Times. Repeated applications of the distributive law, therefore, ultimately result in an expression
of the form Plus[Times, . . . , Times] (or Times or Plus). The Times-Plus-complexity 0 of such an
expression is zero.

3



Problems

1. This problem refers to expressions a)–f) above.
a) Evaluate the expressions.
b) Describe in words the computations that correspond to each.
c) Draw the tree diagrams for c), d) and f).

2. How many different numbers can you form, using only addition and multiplication and using
each the numbers from 1 to 5 at most once.

3. How many different expressions can you form, using only addition and multiplication and
using each the numbers from 1 to 5 at most once.

4. Try Problems 2 and 3 with the numbers from 1 to 6. Try with the numbers from 1 to 7.
5. Tom says, “The distributive law tells you that any computation involving additions and

multiplications—no matter how long and complex and no matter how many alterations be-
tween additions and multiplications—can be done by doing some multiplications first and then
doing some additions.” Is this correct?

Note. The tree diagrams were made using Mathematica. The input for c), for example, was

TreeForm[("1"+"2")"3"+"4")"5"]

It is necessary to put the numerals in quotation marks because without them, Mathematica eval-
uates the expression. The input

TreeForm[((1 + 2) 3 + 4) 5]

gives the output 65. Mathematica applies some ordering rules before making the tree, so what it
produces will not always have its leaves (the entries at the ends of the branches, at the bottom of
the picture) in the order that you put them in.

4


