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Abstract

Suppose an urn contains n sets of beads, each set of size k. Beads are drawn
from the urn one at a time without replacement. We derive a closed-form
expression for the expected number of draws required to completely remove
the first k-set, the second, the third, etc. We accomplish this by recasting
the problem as a special kind of random walk through the integer points in
[0, k]n and exploiting the symmetries of the hypercube. We also show that
the expected proportion of beads removed when the first k-set is completed is
between two constant multiples of k

p

1/n.
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1. Introduction

Thiago Hirai, a young engineer in Seattle, writes at his blog:

I have the habit of leaving my clean clothes in the dryer until they run
out or until I need to dry some more . . . I rarely spend the time to put
them away. When I need some socks I go to the dryer and try to find a
matching pair. This process is often more difficult than I’d expect and it
has bothered me for years. So today I decided to compute the probabilities
involved and the expected number of draws until I find a matching pair.
[2]

Mr. Hirai proceeds to derive a recursive formula similar to equation (4) below. This
problem is a kind of quota fulfillment problem. Such problems are considered in some
generality in [1], but I have not found an explicit formula for the expectation that
Mr. Hirai seeks in any printed source.

In the present paper, we consider a more general quota fulfillment problem. Suppose
an urn contains n sets of beads, each set of size k. Beads are drawn from the urn one
at a time without replacement. At any stage each remaining bead has an equal chance
of being drawn. Let e(n, k, c) denote the expected number of draws required to remove
c entire k-sets. The socks problem asks for e(n, 2, 1). We shall prove that if n ≥ c ≥ 1
and k ≥ 1:

e(n, k, c) =
c k

1
·
(c + 1) k

1 + c k
· · ·

(n − 1) k

1 + (n − 2) k
·

n k

1 + (n − 1) k
. (1)

In order to do this, we recast the problem as an “ascending random walk” through
the set of lattice points in an n-dimensional box. This provides a possible approach to
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other quota fulfillment problems, such as those that arise when the sets of beads all
have different sizes. The technique generalizes to ascending walks in any finite poset
and raises several interesting questions that will be addressed elsewhere. I would like
to thank Ambar Sengupta for suggesting this idea.

2. The socks problem

In this section, we present a self-contained solution of the socks problem and then
point out some obstacles to generalizing it to the beads problem. The only part of
this section that is used later is equation (3), which is a well-known expression for the
expectation of a discrete random variable in terms of tail probabilities. This plays a
central role in the solution of the beads problem in subsequent sections.

Let T (n) be a random variable whose value is the draw on which the first matching
sock is obtained, when n pairs of socks are initially in the dryer. Let Q(n, i) be the
probability that T (n) > i. Clearly, Q(n, 0) = 1, and Q(n, n + 1) = 0 since there must
be a match on or before the (n+1)th draw. If no match has been obtained on or before
the ith draw, then on the (i + 1)th there are 2n− i socks left in the dryer and 2(n− i)
of them do not have a mate that has been drawn. Thus, we have a recursive formula
for Q:

Q(n, i + 1) =
2(n − i)

2n − i
Q(n, i). (2)

Now we can calculate the expected number of socks directly from Q. Recall that if
T is a random variable with non-negative integer values, probability mass function
p(i) := P (T = i) and tail probabilities Q(i) := P (T > i), then the expected value of T
is:

E(T ) =

∞
∑

i=1

i p(i) =

∞
∑

i=1

i
∑

j=1

p(i) =

∞
∑

j=1

∞
∑

i=j

p(i) =

∞
∑

j=0

Q(j). (3)

Accordingly, the expected value of T (n) is

E(T (n)) = Q(n, 0) + Q(n, 1) + · · · + Q(n, n). (4)

E(T (n)) is easily evaluated for small values of n. For n = 1, 2, 3, 4, the values are
respectively 2, 8/3, 16/5, 128/35. As a matter of fact,

E(T (n)) =
2

1
·
4

3
· · ·

2(n − 1)

2n − 2
·

2 n

2n − 1
.

This is an immediate consequence of the following proposition, since the right hand
side of the equation above can be rewritten as the product that appears on the right
hand side of the equation below.

Proposition 2.1.

E(T (n)) = 4n

(

2n

n

)−1

.
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Proof. We derive the proposition from the “unexpected” identity 5.20 of [3]:

n
∑

k=0

(

n + k

k

)

2−k = 2n. (5)

Multiply both sides of (5) by 2n
(

2n
n

)−1
. In the resulting sum on the left, make the

substitution i = n − k to get the sum from i = 0 to n of the terms:

2i

(

2n − i

n − i

)(

2n

n

)−1

= 2i

(

n

i

)(

2n

i

)−1

= Q(n, i). (6)

The first equality in line (6) is a consequence of the identity
(

r
n

)(

n
i

)

=
(

r
i

)(

r−i
n−i

)

(see [3],
5.21); the second is immediate from the recursion in equation (2).

The solution to the socks problem we have just given does not generalize easily to
the beads problem. At any stage prior to completing the first k-set there are many
possible holdings, each arising with different probability and each leading to a different
probability of success on the following draw. For example, after drawing k − 1 beads,
one might be a single draw away from a complete set, or one might have a single bead
from each of several different sets. Thus, it is difficult to write a recursive formula for
the tail probabilities. It is quite a surprise that a formula as simple as (1) works for
all values of k and c.

3. Ascending walks in lattice boxes

We use the following notation. N is the set of non-negative integers. If α, β ∈ N
n,

α ≤ β means αi ≤ βi, for all i. The degree of α, denoted |α|, is α1 + α2 + · · · + αn.
Fix r ∈ N

n and let R := {α ∈ N
n | α ≤ r }. Let r := |r|; this is the largest degree

of any point in R. If α ∈ R, the opposite point of α is r − α. The faces of R are
the subsets F ⊆ R determined by conditions of the form αi = 0 or αi = ri. The
codimension of F is the number of conditions required to define it; the dimension is n
minus the codimension. Thus, R itself is the unique face of codimension 0. The faces
other than R are called proper . The opposite face of F is r−F = { r− α | α ∈ F }. A
face is called distal if it contains r and proximal if it contains 0.

If X ⊆ N
n, the degree-d part of X , denoted X(d), is {α ∈ X | |α| = d }. For each

d = 0, 1, . . . , r, let A(d) be a random variable with values in R(d), the degree d part of
R. Assume that for all d, A(d) ≤ A(d+1), or equivalently that A(d+1) is the result of
increasing one of the coordinates of A(d) by 1. Then, A describes a random walk that
starts at 0 and at each step moves to a new position by increasing one coordinate by
1, but never leaving R. The walk terminates after r steps, when of necessity it arrives
at r. We call this an ascending walk in R.

Set p(α) := P (A(|α|) = α). This is the probability that the particle is at position α
at time d = |α|. The restriction of p to R(d) is the probability mass function of A(d).
Note that if A(d0) is in a distal face, then A(d) belongs to the same face for all d > d0.
If X ⊆ R, then we call

∑

{ p(α) | α ∈ X } the weight of X and denote it W (X). Our
results rest on the computation of the weights of various sets, especially unions of faces
and the degree d parts of such unions. Note that W (R) = 1 + r.
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Let T be a random variable whose value is the smallest d so that A(d) belongs to a
proper distal face, i.e., T is the number of steps required to arrive for the first time in a
proper distal face. The cumulative distribution function of T is conveniently described
in terms of weights. Let U(1) be the union of the proper distal faces. Since the particle
is on a distal face at time d if and only if it has arrived at a distal face at a time ≤ d,
the cumulative distribution is:

G(d) = P (T ≤ d) =
∑

{ p(α) | d = |α| & α is in a proper distal face }

= W
(

U(1)(d)
)

.

Using equation (3),

E(T ) =

r
∑

d=0

(1 − G(d)) = W (R) − W (U(1)). (7)

The same approach allows us to express the expected number of draws until other
quotas are fulfilled in terms of the weights of subsets of R. For example, let Tc be
the smallest d so that A(d) belongs to a distal face of codimension ≥ c. (In the bead
model, this is the number of draws required to complete c sets of beads.) Let U(c) be
the union of the distal faces of codimension ≥ c, and let U◦(c) = U(c)\U(c+1). Then
the cumulative distribution function of Tc is

Gc(d) = P (Tc ≤ d) = W
(

U(c)(d)
)

.

Accordingly,

E(Tc) = W (R) − W (U(c)), (8)

and

E(Tc+1) = E(Tc) + W (U◦(c)). (9)

4. Weights of faces in urn models

The urn model presented in the introduction can be treated in this framework.
Indeed, an even more general situation can be considered. Suppose the urn contains
n sets of beads and that the ith set contains ri beads. Then we can attempt to find
the expected value of T = the number of draws required to complete one set. This is
given (in theory) by formula (7). But to evaluate this, we need to know p(α) and we
need to be able to do a summation over a potentially very complex index set. In this
section, we address these problems.

The first problem is easy. Since p(α) is the probability of having taken αi of
the ri beads of color i, when |α| beads are drawn from a set of r beads, it is the
multidimensional hypergeometric probability mass function. To express this, let us
use the following notation: for r, α ∈ N

n, let

(

r

α

)

:=

n
∏

i=1

(

ri

αi

)

.
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Then

p(α) =

(

r

α

)(

|r|

|α|

)−1

. (10)

The second problem is harder, but for the particular p that we are considering some
simplification is possible by exploiting the fact that summing over distal faces is the
same as summing over proximal faces, since p(α) = p(r − α). We will compute the
weights of the proximal faces. Fix i and consider the face F{i} determined by αi = 0.

Let s be the vector obtained by replacing the ith component of r by 0. Then if α ∈ F{i},

(

r

α

)

=

(

s

α

)

.

Let s = |s| = r − ri and d = |α|. Let q be the probability function for an ascending
walk in F{i} (considered as a subset of N

n−1). Exchanging the denominators in (10),
we see that:

p(α) =

(

s

d

)(

r

d

)−1

q(α).

Since
∑

{ q(α) | α ∈ F
(d)
{i} } = 1, the weight of F

(d)
{i} (which is calculated from p) is:

W
(

F
(d)
{i}

)

=

(

s

d

)(

r

d

)−1

.

From this, we get

W
(

F{i}

)

=
s

∑

d=0

(

s

d

)(

r

d

)−1

=
1 + r

1 + r − s
=

1 + r

1 + ri
.

The second equality in the line above is proved in Problem 1, page 173, of [3]. A
quicker approach is as follows: let S(r, s) stand for the sum indexed by d. Then
S(r, s) = 1 + s

rS(r − 1, s − 1), so the equality follows by induction.
The same reasoning that we applied to F{i} yields a formula for the weight of a

proximal face of any codimension. Let I be a subset of {1, 2, . . . , n}, let FI be the face
determined by demanding that αi = 0 for all i ∈ I and let rI =

∑

{ ri | i ∈ I }. Then,

W (FI) =
1 + r

1 + rI
.

In order to compute the expectations e(n, k, c), we need to find weights of unions
of distal faces. The weight of the union of all proper distal faces of codimension one
can be computed from the information we have already adduced using the inclusion-
exclusion principle, since the intersections of pairs of distal faces of codimension one are
the codimension 2 distal faces F{i,j}, the intersections of triples are the codimension
3 distal faces, etc. If we wish to compute the weight of the union of all distal faces
of codimension c > 1, we need to take into account the fact that the codimension of
an intersection of such faces is not determined by the number of faces intersecting. In
this case, a more powerful counting principle is needed. It turns out that binomial
inversion (a special case of Möbius inversion) suffices. We will elaborate in the next
section, as needed.
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5. Sets of equal size

In this section, we complete the proof of the main theorem by applying the theory
developed above to the special case when ri = k for all i. Under this assumption, all
the distal faces of any given codimension are equivalent. We will write w(n, k, c) for
the weight of a face of codimension c. The last result of the previous section tells us:

w(n, k, c) =
1 + n k

1 + c k
. (11)

In the following, we will make use of the partial fraction expansion of the reciprocal
of a polynomial with evenly spaced roots:

1

x(x + k)(x + 2k) · · · (x + nk)
=

1

kn n!

n
∑

i=0

(−1)i

(

n

i

)

1

x + ik
, (12)

for which see Remark 8.5, page 68 of [4]. (A special case appears as equation 5.41 in
[3].)

Lemma 5.1. Let w◦(n, k, c) be the weight of the set of integer points in a distal face

of codimension c that do not lie in any distal face of higher codimension. Then:

w◦(n, k, c) =
kn−c (n − c)!

(

1 + c k
)

· · ·
(

1 + (n − 1) k
) (13)

Proof. For simplicity, rather than working with codimension, c, we work with di-
mension, δ = n − c. Put v(n, k, δ) := w(n, k, n − δ) and v◦(n, k, δ) := w◦(n, k, n − δ).
We compute v◦(n, k, δ) as below, each step being justified in the comments following
the derivation:

v◦(n, k, δ) =

δ
∑

j=0

(−1)δ+j

(

δ

j

)

v(n, k, j) (14)

=

δ
∑

j=0

(−1)δ+j

(

δ

j

)

1 + n k

1 + (n − j) k
(15)

=

δ
∑

i=0

(−1)i

(

δ

i

)

1 + n k

1 + (n − δ) k + i k
(16)

=
kδδ!

(

1 + (n − δ) k
)

· · ·
(

1 + (n − 1) k
) . (17)

Line (14) follows by binomial inversion (see [3], page 192) from:

v(n, k, δ) =

δ
∑

j=0

(

δ

j

)

v◦(n, k, j),

which itself is simply the result of counting the distal faces of a δ-dimensional hyper-
cube. Line (15) is from (11) and the definition of v. Line (16) is obtained by the
substitution i = δ − j and the last line is from (12).
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Let us record some immediate corollaries. First, let U◦(n, k, c) be the set of all
integer points that lie is some distal face of codimension c but not in any distal face of
higher codimension. Since there are

(

n
c

)

such faces, we have:

W
(

U◦(n, k, c)
)

=

(

n

c

)

w◦(n, k, c) =
n!

c!

kn−c

(

1 + c k
)

· · ·
(

1 + (n − 1) k
) . (18)

Second, note that e(n, k, 1) = w◦(n, k, 0). Hence

e(n, k, 1) =
kn n!

(1 + k)(1 + 2 k) · · · (1 + (n − 1) k)
. (19)

This is the c = 1 case of our main theorem. We now restate and prove the full result,
with a minor reformatting of the product on the right of (1):

Theorem 5.1. Let n ≥ c ≥ 1 and k ≥ 1 be integers and let e(n, k, c) denote the

expected number of draws required to remove c entire k-sets from an urn containing n
distinct k-sets. Then

e(n, k, c) =
n!

(c − 1)!

kn−c+1

(1 + ck)(1 + (c + 1)k) · · · (1 + (n − 1)k)
. (20)

Proof. Let R(n, k, c) be the right hand side of equation (20). We show that e(n, k, c) =
R(n, k, c) by induction on c. The c = 1 case is equation (19). Fix c > 1 and assume
that e(n, k, c) = R(n, k, c) for all k ≥ 0 and n ≥ c. Note that e(n, k, c) = k B and
W

(

U◦(n, k, c)
)

= 1
c B, where

B :=
n!

(c − 1)!

kn−c

(1 + ck) · · · (1 + (n − 1)k)
.

By equation (9), e(n, k, c + 1) = e(n, k, c) + W
(

U◦(n, k, c)
)

. Thus

e(n, k, c + 1) =

(

1 + c k

c

)

B = R(n, k, c + 1).

6. Asymptotics

We close by looking at some asymptotic properties of the function e(n, k, 1). Fix k.
For large n, what proportion of the items are removed at the time of the expected first
match? That is, how does the ratio e(n, k, 1)/(nk) behave as n → ∞? To answer this,
we examine the reciprocal of this ratio. For integers 0 ≤ m < n, let

Rn
m :=

n
∏

i=m+1

(

1 +
1

k i

)

.

A straightforward calculation shows that, Rn−1
0 = n k/e(n, k, 1).

Let Sn
m := 1

m+1 + 1
m+2 + · · · + 1

n . Recall that

ln(n + 1) − ln(m + 1) < Sn
m < ln(n) − ln(m).
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Let ω(m) = ln(1 + 1/k
m ). Then, if 0 < x < 1

k m ,

e
ω(m)
k m

x < 1 + x < ex.

If we let x = 1
k(m+1) ,

1
k(m+2) , . . . ,

1
n , multiply and take logarithms, we get:

ω(m)

m

Sn
m

k
< ln(Rn

m) <
Sn

m

k
.

Hence
ω(m)

m

ln(n + 1) − ln(m + 1)

k
< ln(Rn

m) <
ln(n) − ln(m)

k
.

Applying the exponential function, we get:

(

1 +
1/k

m

)
1
m

(

n + 1

m + 1

)
1
k

< Rn
m <

(

n

m

)
1
k

.

From this, we can conclude that there are positive constants A and B such that

An
1
k < Rn

0 < B n
1
k .

Accordingly, e(n, k, 1)/(nk) is between two positive constant multiples of k

√

1/n.
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