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Abstract. A totally ordered monoid—or tomonoid, for short—is a commutative
semigroup with identity S equipped with a total order ≤S that is translation in-
variant, i.e., that satisfies: ∀x, y, z ∈ S x ≤S y ⇒ x + z ≤S y + z. We call
a tomonoid that is a quotient of some totally ordered free commutative monoid
formally integral. Our most significant results concern characterizations of this
condition by means of constructions in the lattice Zn that are reminiscent of the
geometric interpretation of the Buchberger algorithm that occurs in integer pro-
gramming. In particular, we show that every two-generator tomonoid is formally
integral. In addition, we give several (new) examples of tomonoids that are not
formally integral, we present results on the structure of nil tomonoids and we show
how a valuation-theoretic construction due to Hion reveals relationships between
formally integral tomonoids and ordered commutative rings satisfying a condition
introduced by Henriksen and Isbell.

0. Introduction.

In his 1976 survey of ordered semigroups [G], E. Ya. Gabovich identified several general
research problems. The present work contains results that respond directly to at least three
of these. First, Gabovich asked explicitly for criteria for formal integrality (and related
properties in possibly non-commutative varieties of semigroups). Second, he posed the
general problem of developing structure theories for classes of ordered semigroups. Third,
he singled out Hion’s work as a potentially useful way of describing the structure of totally
ordered rings. We now comment on each of these topics in more detail.

For clarity, we define a few terms that will be used in the introduction. A monoid is
a set with an associative binary operation and an identity element. All monoids in this
paper are commutative. The concept of a tomonoid is defined in the abstract. Let S be
a tomonoid. We say S is positive if 0S ≤S x for all x ∈ S. If S is positive, we say S is
archimedean if for any x, y ∈ S \ {0S} there is a positive integer n such that x ≤S ny.
When we speak of a quotient of S, we always intend a congruence relation θ with convex
classes, so the natural surjection S →→ S/θ induces a translation-invariant total order on
S/θ. We view S/θ as a tomonoid with this order. When we speak of a sub-tomonoid of S,
we intend a sub-monoid with induced order.

Problem 6 of [G] reads: In a variety (of semigroups) whose free semigroups are order-
able, find necessary and sufficient conditions for a totally ordered semigroup to be a quo-
tient of some totally ordered free semigroup. All free commutative monoids are orderable—
indeed the positive orders on finitely generated free commutative monoids are the so-called
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“term orders” that figure prominently in Buchberger’s algorithm. Thus the description of
formally integral tomonoids is an instance of Gabovich’s problem. We present a useful
characterization of formal integrality in Proposition 4.4, and as a corollary (4.5) we find
that every cancellation tomonoid is formally integral (thus, answering another question
from [G]). Much deeper applications of 4.4 include Theorem 4.8, stating that any two-
generator tomonoid is formally integral and Theorem 6.1, stating that a positive tomonoid
whose generators are ‘spaced sufficiently far apart’ (in a sense made precise in the state-
ment of the theorem) is formally integral. The proofs of 4.8 and 6.1 were inspired by
Thomas’s geometric interpretation of the Buchberger algorithm [T].

Examples of tomonoids that are not formally integral have appeared previously (see
[HI], [I1], [I2] and [GIR]), but in all cases these examples have required at least 4 genera-
tors. In §5, we present examples of 3-generator tomonoids that are not formally integral,
including one example that has 9 elements. (Whipple has recently shown that all positive
tomonoids with 8 or fewer elements are formally integral, [W].) In §9,we describe a Math-
ematica program we wrote that searches for 3-generator positive tomonoids that are not
formally integral and determines isomorphism types. Using it, found nearly two hundred
(non-isomorphic) examples. Typically, these are not easy to come by. For example, in a
collection of 8000 candidates that met conditions required by Theorem 6.1, we found that
less than 1% failed to be formally integral. The program uses a convex hull computation
and depends upon a good deal of the theory developed in the present paper. It is available
by email on request from the senior author at madden@math.lsu.edu.

We turn to the second area where the present work responds to Gabovich’s program.
His review devotes considerable attention to problems arising in the structure theory of
ordered semigroups. Every totally ordered semigroup decomposes into a disjoint union of
archimedean subsemigroups—the archimedean classes. (See [G], page 179 for a discussion,
which involves some delicate definitions.) Thus, solutions to the following problems would
provide a basis for a complete structure theory:

• First structure problem : Determine the structure of an arbitrary archimedean totally
ordered semigroup.

• Second structure problem: Determine the ways in which a given chain of archimedean
totally ordered semigroups can be assembled to form a totally ordered semigroup
having the elements of the chain as its archimedean classes.

At present, we are nowhere near a solution of the more basic first problem, even in the com-
mutative case. Therefore, it is reasonable to hope to make inroads by developing structure
theories for classes of totally ordered semigroups that are defined by properties stronger
than archimedean. Our results have a bearing on one such class. In the terminology of
[G], an additive semigroup S is said to be nil if it has an absorbing element ∞ and for
each element x ∈ S there is n ∈ N such that nx = ∞. It is clear that a positive totally
ordered nilsemigroup is archimedean. Problem 16 of [G] asks for a description of all totally
ordered nilsemigroups . . ., (in the first instance, the finite ones).

In the present paper, a tomonoid S is called nil if it is positive and S \ {0} is nil
in the sense of [G]. We show (7.2) that every finite formally integral nil tomonoid is a
quotient of a sub-tomonoid of N. This reduces the structure problem for this class to
the problem of classifying convex congruences on sub-tomonoids of N. This would appear
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to be a tractable problem, especially in view of Grillet’s work [Gr] on congruences on
commutative semigroups. As for finite nil tomonoids that fail to be formally integral,
proposition 4.7 provides a reasonable starting point; see the remarks at the end of §7. We
plan to take up these problems in a future paper.

During the work leading to the present paper, we considered but did not answer what
might be the most basic problem relating to the second structure problem:

Problem 1. If (S is positive and) each archimedean class of S is formally integral, does
it follow that S is formally integral?

We now make a few remarks on a property which received a lot of attention in the
work of Clifford [C] and which was featured in Fuchs’s textbook [F] and in the review [HL].
We say S is naturally ordered if it is positive and x ≤S y implies that y = x + z for some
z ∈ S. The theorem of Clifford, Hölder and Huntington (see [C] or [HL]) implies that every
naturally ordered positive archimedean tomonoid is order-isomorphic to a sub-tomonoid
of one of the following tomonoids:

R≥0 , R≥0/[1,∞) or R≥0/(1,∞).

Here, R≥0 denotes the non-negative reals under addition, and the latter two tomonoids are
quotients of R≥0 each with exactly one non-singleton congruence class, [1,∞) and (1,∞),
respectively. Thus, we have the implication

positive, naturally ordered and archimedean ⇒ quotient of a sub-tomonoid of R≥0.

This implication is obviously not reversible. For example, the sub-tomonoid of R≥0 gen-
erated by 2 and 3 is not naturally ordered. By 4.2 and 4.5, we have the implication

quotient of a sub-tomonoid of R≥0 ⇒ formally integral and archimedean.

These observations raise a couple of questions that we have not attempted to answer:

Problem 2. Is every positive formally integral archimedean tomonoid a quotient of a
sub-tomonoid of R≥0?

A special case of this—applying to finite formally integral nil tomonoids—is true by 7.2.
Relevant to Problem 2 is the work of Alimov, who found necessary and sufficient conditions
for a tomonoid to be isomorphic to a sub-tomonoid of R≥0. His work is discussed in [F],
[HI], [Sa]. We also pose the following, which is related to Problem 1:

Problem 3. Is every naturally ordered tomonoid formally integral?

The third way in which our work is related Gabovich’s program concerns applications
to ordered rings. This theme originates in work of Hion from the 1950’s, in which he worked
out a kind of generalized valuation theory for arbitrary ordered rings; see [Hi], [G]. A Hion
valuation is a map from a totally ordered rings to its tomonoid of (additive) archimedean
classes. Connections between ordered semigroups and ordered rings were also considered
by Henriksen and Isbell in the early 1960’s; see [HI]. They introduced a generalization of
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the concept of a formally real field that is meaningful for lattice-ordered commutative rings.
They showed that a totally ordered ring is formally real (in their extended sense) if and
only if it is a quotient of a totally ordered domain. In producing examples of non-formally
real rings, they used the fact that a totally ordered monoid algebra over a non-formally
integral tomonoid is never formally real. We describe all this in more detail in §8.

In recent years, tomonoid structures on Nn—i.e., term orders—have played an im-
portant role in connection with Gröbner bases, toric varieties and integer programming;
see [St]. We hope that readers familiar with this will find connections with what we report
here. For example, can techniques used in [T] lead to an intersting structure theory for
finite tomonoids, or help in solving the problem of characterizing the finite monoids that
admit non-formally-integral total orders? Is the (fairly obvious) generalization Gröbner
bases to monoid algebras over positive tomonoids of any use or significance?

As to the contents of this paper, §1 introduces notation and §2 reviews well-known
results on ordered groups. Each total order on an abelian group is completely determined
by its positive cone. For monoids, it is impossible to associate cones with orders. The
nearest analogue is the difference set. We define difference sets in §3 and prove some
technical lemmas about them. In §4, we introduce the formally integral tomonoids and
use difference sets to prove a number of propositions about them, including Theorem 4.8,
which states that every 2-generator tomonoid is formally integral. §5 discusses examples
of 3-generator tomonoids that are not formally integral. In §6, we use the same method of
proof as in 4.8 to obtain a more general theorem that we expect to be useful for proving
theorems about Hion tomonoids of a totally ordered rings. §7 contains some results on nil
tomonoids. §8 discusses connections with ordered rings, and §9 describes an algorithm we
used to search for examples of non-formally-integral tomonoids with 3 generators.

The first three authors were participants in the summer 1997 Research Experiences
for Undergraduates Program at Louisiana State University, funded by the Louisiana Ed-
ucational Quality Support Fund (LEQSF) Enhancement Grant. Madden’s work was sup-
ported by NSF grant DMS-9401509. Computer equipment supporting the development of
the Mathematica programs described above was supplied by LEQSF grant (1995-98)-RD-
A-24.

1. Notation, terminology and preliminaries.

This section sets up terminology and concludes with a couple of useful lemmas (which are
certainly not original with us, but for which we know no reference). We consider partially
ordered monoids, even though they are not considered in the rest of this paper, because
they are likely to play a role in future work.

A monoid is a set with an associative binary operation having an identity. All monoids
considered here are commutative, and the term “monoid” always means commutative
monoid. N, Z and Q denote, respectively, the non-negative integers, the integers and the
rationals. We will generally use additive notation. Let S be a monoid. The operation in
S is denoted +; the identity element is denoted 0 (or 0S); the n-fold sum s + s + · · ·+ s is
denoted ns. We say that S is generated by a subset E ⊆ S if every element of S is of the
form s = n1e1 + · · ·nkek for some n1, . . . nk ∈ N and e1, . . . ek ∈ E.

We shall make frequent use of free monoids, so we review some basic facts concerning
them. Let I be a set. The free monoid on I is denoted FN (I). It is the monoid of all
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functions x : I → N such that x(i) 6= 0 for at most finitely many i ∈ I . Thus, if I is
finite—as it will be in most applications considered here—FN (I) = NI . For i ∈ I , let
εi : I → N denote the function defined by

εi(j) =
{

1 if i = j
0 otherwise.

These generate FN (I). FN (I) has the following universal mapping property: for any monoid
S and any set map f : I → S, there is a unique monoid homomorphism f : FN (I) → S
such that f (i) = f (εi) for all i ∈ I .

FZ (I) and FQ(I) denote, respectively, the free abelian group and the free Q-vector-
space on I . The description of these objects is analogous to the description of FN (I), but
with Z or Q in place of N. We have natural containments FN (I) ⊆ FZ (I) ⊆ FQ(I).

Now we turn to orderings. Let ≤S be a partial order relation on S. We say that ≤S

is translation-invariant if

∀ s, t, u ∈ S s ≤S t ⇒ s + u ≤S t + u. (TI)

We say that ≤S is a-saturated if

∀ s, t, u ∈ S s + u <S t + u ⇒ s <S t.

We say that ≤S is m-saturated if for all s, t ∈ S and all positive integers n, ns <S nt implies
s <S t. It is easy to see that every translation-invariant total order is both a-saturated
and m-saturated.

A monoid equipped with a translation-invariant partial order is called a pomonoid . A
monoid equipped with a translation-invariant total order is called a tomonoid . We say that
≤S is positive—or that (S,≤S ) is a positive pomonoid—if for all s ∈ S, 0S ≤S s. Similarly,
we say that ≤S is negative if for all s ∈ S, s ≤S 0S . Suppose S and T are pomonoids. A
function φ : S → T is called a homomorphism if φ(s+ t) = φ(s)+φ(t) for all s, t ∈ S. If in
addition s ≤S t implies φ(s) ≤T φ(t) for all s, t ∈ S, then we call φ a pomonoid morphism ,
or, if S and T are totally ordered, a tomonoid morphism .

It is often useful to consider all the ways a given monoid may be ordered. If ≤S is a
translation-invariant partial order, then we call ≤S itself a TIPO . If 0S ≤S s for all s ∈ S,
then we speak of positive TIPO . Similarly we may speak of an a-saturated or m-saturated
TIPO. An intersection (in S × S) of any family of TIPO’s is a TIPO. Thus, if a relation
R ⊆ S×S is contained in a TIPO, there is a weakest TIPO that extends R, and it is called
the TIPO generated by R. A TIPO that is a total order will be called it a TITO . In this
paper, we have little more to say about general TIPO’s; we have mentioned them only in
conjunction with our review of facts about TITO’s. An answer to the following question,
however, would be extremely useful in extending the results of subsequent sections to
pomonoids.

Problem 4. Let S be a monoid. Characterize those TIPO’s on S that are intersections
of TITO’s.

Clearly, such a TIPO must be a-m-saturated, but we do not know if every a-m-saturated
TIPO is an intersection of TITO’s.
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We now discuss a particularly simple kind of congruence that we use frequently. Sup-
pose that (S,≤S) is a tomonoid. A subset K ⊆ S is called an upper interval if s ∈ K and
t >S s implies t ∈ K. If K is an upper interval and S + K ⊆ K, then S/K denotes the
tomonoid whose elements are the x ∈ S such that x 6∈ K together with one more element,
denoted ∞. The operation is the same as in S, except that if s1 + s2 ∈ K (in S), then
we put s1 + s2 = ∞ (in S/K), and for any s, s + ∞ = ∞. The order is such that ∞
greater than every other element, and otherwise is the same as in S. There is a surjective
tomonoid monomorphism πK : S → S/K that sends every element in K to ∞ and is the
identity elsewhere. If w ∈ S, S/w is an abbreviation for S/{ s ∈ S | w ≤S s } (if it is
defined), and πw : S → S/w denotes the corresponding quotient map.

The following proposition and its corollaries are useful elementary facts.

Proposition 1.1. Any sequence of elements in a finitely generated positive pomonoid
contains a non-decreasing subsequence.

Proof . Suppose S is generated by e1, . . . , en. Suppose {si} is a sequence of elements of
S. Choose a sequence {νi} of elements of Nn such that si = νi1e1 + · · · νinen. Take a

subsequence {ν(1)
i } ⊆ {νi} so that {ν(1)

i1 } is non-decreasing. Choose a subsequence {ν(2)
i } ⊆

{ν(1)
i } so that {ν(2)

i2 } is non-decreasing. Continuing in this manner, we obtain a sequence

{ν(n)
i } so that {ν(n)

ij }∞i=1 is non-decreasing for all j = 1, . . . , n. Then {ν(n)
i1 e1+· · · ν(n)

in en}∞i=1

a non-decreasing subsequence of {si}.

Corollary 1.2. A finitely-generated positive pomonoid satisfies the descending chain con-
dition. A finitely-generated positive tomonoid is well-ordered, i.e., every subset has a least
element.

Let S be a tomonoid. A set E of generators for S is minimal if no subset of E
generates S.

Corollary 1.3. Every finitely-generated positive tomonoid has a unique minimal set of
generators.

Proof . Let s1 <S · · · <S sm and s′1 <S · · · <S s′n be two minimal generating sets for S.
Clearly, s1 = s′1 is the smallest non-zero element of S. Suppose we have found si = s′i for
i = 1, . . . , k. Then, sk+1 = s′k+1 must be the least element of S that is not in 〈s1, . . . sk〉.

The proof shows that the minimal generating set is minimal in two senses: it has the fewest
number of elements and the elements are as small (in the relevant TITO) as possible.

Many of the definitions we have made (and the results to follow) extend to (commu-
ataive) semigroups S equipped with orders satisfying (TI). In making generalizations care
is needed, unless S is positive (i.e./, s+ t ≥ s for all s, t ∈ S). If S is positive, then we can
obviously adjoin an identity 0 such that 0 ≤ s for all s ∈ S. Because of this, in considering
positive semigroups, the presence or absence of an identity makes little difference.
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2. Orders on abelian groups.

This section treats two topics. First, we review the well-known correspondence between
pointed convex cones and TIPOs in a Q-vector space. After this, we present a proposition
that solves the problem of classifying all TITO’s on a free commutative monoid by reducing
it to the problem of classifying all TITO’s on a a Q-vector space of the same rank.

Let V be a Q-vector-space. A non-empty subset C ⊂ V is called a pointed convex
cone or a P-cone if C contains no subspace and λv + µw ∈ C whenever λ and µ are
nonnegative rationals and v and w are in C. If C ⊂ V is a P-cone, then the relation ≤C

on V defined by
v ≤C w ⇔ w − v ∈ C

is an m-saturated TIPO. Conversely, if ≤ is an m-saturated TIPO on V then P (≤) :=
{ v ∈ V | 0V ≤ v } is a P-cone. Moreover, P (≤P0

) = P0 for any P-cone P0, and ≤
P (≤0)

= ≤0

for any m-saturated TIPO ≤0.
If C is a P-cone and C ∪−C = V , we call C a T-cone. ≤C is a TITO if and only C is

a T-cone. It can be shown that a T-cone is just a maximal P-cone and that every P-cone
is equal to the intersection of all the T-cones that contain it.

Let A be a torsion-free abelian group, let V := Q ⊗ A be the divisible hull of A.
We call C ′ ⊆ A a P-cone (respectively, a T-cone) in A if C′ = C ∩ A for some P-cone
(respectively, T-cone) C ⊆ V . As with vector spaces, there is a one-to-one correspondence
between P-cones in A and m-saturated TIPO’s, with T-cones corresponding to TITO’s.

The next proposition states that any TITO on FN (I) is the restriction to FN (I) of a
TITO on FQ(I). This fairly well-known fact is not difficult to prove, but because the proof
illustrates notation that will be useful later, we include it. We use the componentwise
lattice order on FZ (I), which is denoted ≤` and is defined by

x ≤` y ⇔ ∀i ∈ I x(i) ≤ y(i).

For any x, y ∈ FZ (I), x ∨ y, x ∧ y, x+, and x− have the following meanings:

•
(
x ∨ y

)
(i) := max {x(i), y(i)},

•
(
x ∧ y

)
(i) := min {x(i), y(i)},

• x+ := x ∨ 0 and
• x− := (−x) ∨ 0.

Obviously:
0 ≤ x+ , 0 ≤ x− , and x = x+ − x−.

Proposition 2.1. Let I be a set. Any TITO on FN (I) has a unique extension to a TITO
on FZ (I) and a unique extension to a TITO on FQ(I).

Proof . Let ≤0 be a TITO on FN (I). For any x, y ∈ FZ (I), (x∧ y)− is the least element z in
the order ≤` such that x + z and y + z are both in FN (I). Let ≤1 be the relation on FZ (I)
defined by

x ≤1 y ⇔ x + (x ∧ y)− ≤0 y + (x ∧ y)−.

It is clear that any TITO on FZ (I) that restricts to ≤0 on FN (I) must satisfy this condition,
and is uniquely determined by it. So, we only need to show that ≤1 is a TITO on FZ (I).
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It is obvious that ≤1 is reflexive and anti-symmetric, and that for any pair of elements
x, y ∈ FZ (I), either x ≤1 y or y ≤1 x. It remains to verify that ≤1 is transitive and
translation-invariant. Note that for all x, y ∈ FZ (I),

x ≤1 y ⇔ for all w ∈ FN (I), (x ∧ y)− ≤` w implies x + w ≤0 y + w. (†)

Suppose that x ≤1 y and y ≤1 z. Pick w ∈ FN (I) such that (x∧y)−∨(y∧z)− ≤` w. By (†),
x+w ≤0 y+w and y+w ≤0 z+w. By transitivity of ≤0, x+w ≤0 z+w, and by (†) again,
x ≤1 y. Suppose that x ≤1 y and z ∈ FZ (I). Pick w ∈ FN (I) such that (x∧y)− ≤` z+w and
((x+z)∧(y+z))− ≤` w. Then by (†), (x+z)+w = x+(z+w) ≤0 y+(z+w) = (y+z)+w,
and by (†) again, x + z ≤1 y + z. This completes the demonstration that ≤1 is a TITO.

Next, let ≤2 be the relation on FQ(I) defined by

x ≤2 y ⇔ ∃k ∈ N \ {0} such that kx, ky ∈ FZ (I); & kx ≤1 ky.

We leave it to the reader to perform the straightforward verification that this is a TITO
on FQ(I) and that it is the only one that restricts to ≤1.

Any homomorphism φ : FN (I) → FN (J) has a unique extension to a homomorphism
φ : FZ (I) → FZ (J). If σ and τ are TITO’s on FN (I) and FN (J), respectively, and σ and τ
are their extensions to FZ (I) and FZ (J), then φ is a tomonoid morphism with respect to σ
and τ . For if x ≤ y in FZ (I), then for some z ∈ FN (I), x + z and y + z are in FN (I). Then
φ(x + z) ≤ φ(y + z) in FN (J), so φ(x) ≤ φ(y) in FZ (J).

3. Difference sets and cones.

In contrast to the free monoid case, the TITOs on a general monoid S are not in one-to-
one correspondence with a set of cones in a vector space. Nonetheless, given a surjection
FN (I) →→ S, we can associate with each TITO ≤S on S a cone in FQ(I), and this cone yields
a lot of information ≤S . Even more information about ≤S is recorded in the difference set
of ≤S , which we define and discuss below. Difference sets represent an attempt to extend
the geometric picture of orderings on groups that we discussed in the previous section to
the case of monoids; we think the results we obtain in §4 and §6 indicate that this attempt
has been moderately successful.

Suppose that

φ : FN (I) → S

is a monoid homomorphism. If ≤S is a TIPO on S and <S is the associated strict order,
we let

D(φ, <S) := { z ∈ FZ (I) | z = y − x for some x, y ∈ FN (I) such that φ(x) <S φ(y) },

and we call D(φ, <S) the difference set of <S by φ. If the order on S is understood, we
write D(φ) as shorthand for D(φ, <S). The cone in FQ(I) generated by D(φ) is denoted
C(φ). Note that 0F

N
(I) is never in D(φ) (but is always in C(φ)).
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Lemma 3.1. Let S be a tomonoid. If d ∈ D(φ), then φ(d−) <S φ(d+).

Proof . Suppose d ∈ D(φ). Then d = y−x, for some x, y ∈ FN (I) with φ(x) <S φ(y). Since
x, y ≥` 0, d− ≤ x. Thus, setting e := x− d−, we have e ∈ FN (I). We have x = d− + e and
y = d++e, and therefore φ(d−+e) <S φ(d++e). This implies φ(d−)+φ(e) <S φ(d+)+φ(e).
Since in a tomonoid the strict order relation is cancellative, φ(d−) <S φ(d+).

Suppose S is a tomonoid, φ : FN (I) → S and d ∈ D(φ). Let e ∈ FN (I). It is possible
that φ(d− + e) = φ(d+ + e), since two different elements of S may have the same translate
by φ(e). Thus, in general, if y − x ∈ D(φ), then we can only conclude that φ(x) ≤S φ(y).
From φ(x) ≤S φ(y), no conclusion about the containment of y − x in D(φ) is possible.

If φ is surjective, then the full tomonoid structure of S is determined by D and φ. To
be more precise:

Lemma 3.2. Let S be a monoid, let ≤1 and ≤2 be two TITO’s on S, and assume φ :
FN (I) → S is surjective. The identity map on S is an order-isomorphism from (S,≤1) to
(S,≤2) if and only if D(φ,<1) = D(φ, <2).

Proof . Every element of S is φ(z) for some z ∈ FN (I). If φ(x) ≤1 φ(y) then either
y − x ∈ D(φ,<1) = D(φ,<2) or φ(x) = φ(y). In either case, φ(x) ≤2 φ(y). Similarly,
φ(x) ≤2 φ(y) implies φ(x) ≤1 φ(y).

Lemma 3.2 does not generalize to TIPO’s, since the cancellative property of the strict
order relation is needed.

In general, D(φ)—unlike C(φ)—is not closed under addition. If d1, d2 ∈ D(φ), then
d1 + d2 may or may not be in D(φ). (This makes TITO’s on monoids far more complex
than TITO’s on abelian groups.) Nonetheless, we have the following:

Lemma 3.3. Let S be a tomonoid, and suppose d1, d2 ∈ D(φ). If d1
+ + d2 ≥` 0 then

d1 + d2 ∈ D(φ).

Proof . If di ∈ D, then φ(di
−) <S φ(di

+). If d1
+ + d2 ≥` 0, then d1

+ − d2
− ∈ FN (I), so

φ(d1
+ − d2

−) is defined. Then

φ(d1
+) = φ(d2

−) + φ(d1
+ − d2

−) ≤S φ(d2
+) + φ(d1

+ − d2
−) = φ(d1

+ + d2),

and so
φ(d1

−) <S φ(d1
+ + d2).

Thus,
d1

+ + d2 − d1
− = d1 + d2 ∈ D(φ).

A good way to understand this lemma is to think in terms of addition of directed
segments. For a, b ∈ Nn, let (a → b) denote the directed segment from a to b. We add
segments as we add geometric vectors—by translation and concatenation:

(a → b) + (c → d) = (a → b) + (b → (d + b− c)) = (a → (b + d − c)).

For d ∈ D(φ), we think of d as represented by (d− → d+). The addition rule reads:
(d−1 → d+

1 ) + (d−2 → d+
2 ) = (d−1 → (d+

1 + d2)). Thus, d1 + d2 belongs to D(φ) if the
concatenation of (d−1 → d+

1 ) and the appropriate translate of (d−2 → d+
2 ) terminates at a

point in Nn.
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4. Formally integral tomonoids.

Suppose that S is a monoid and ≤S is a TITO on S. We say ≤S is formally integral
(or that (S,≤S) is a formally integral tomonoid) if there is a set I , a monoid surjection
φ : FN (I) →→ S and a TITO ≤0 on FN (I) such that x ≤0 y implies φ(x) ≤S φ(y). Obviously,
for any set J , any TITO on FN (J) is formally integral. Also obvious is the fact that a
quotient of a formally integral tomonoid is formally integral. (Reminder: if S and T are
tomonoids, we say that T is a quotient of S if there is a surjective tomonoid morphism
from S onto T . This is not the meaning of “homomorphic image” used in model theory
(as in [CK], page 70). The latter allows, for example, that if (S,≤S ) is a tomonoid and R
is any relation whatsoever such that ≤S⊆ R (in S × S), then (S,R) is a “homomorphic
image” of (S,≤S).)

Proposition 4.1. If (S,≤S) is formally integral and ψ : FN (J) → S is any homomorphism,
there is a TITO on FN (J) such that ψ preserves order.

Proof . We may find a set I, a monoid surjection φ : FN (I) →→ S and a TITO ≤0 on
FN (I) such that φ preserves order. Let ψ : FN (J) → S be given. There is a monoid
homomorphism f : FN (J) → FN (I) such that φ ◦ f = ψ . This has a unique extension to a

homomorphism of Q-vector spaces f̂ : FQ(J) → FQ(I). Let P ⊆ FQ(I) be the positive cone

of the unique extension of ≤0 to FQ(I). Then f̂−1(P \ {0}) is contained in a pointed cone

in FQ(J). By adding to f̂−1(P \ {0}) any T-cone in the kernel of f̂ , we obtain a T-cone in

FQ(J). This T-cone determines a TITO on FQ(J) with respect to which f̂ is an tomonoid
morphism. With respect to the associated TITO on FN (J), then, ψ = φ ◦ f is an tomonoid
morphism.

Corollary 4.2. Any sub-tomonoid of a formally integral tomonoid is formally integral.

Proof . Suppose U is a sub-tomonoid of S, and S is formally integral. Let I be a set of
generators for U and let J be a set of generators for S containing I . There is a TITO ≤0

on FN (J) such that φ : FN (J) →→ S is order preserving. The restrictions of ≤0 and φ to
FN (I) give the data needed to show that U is formally integral.

The following lemma is used to prove the next proposition, but it is interesting in its
own right.

Lemma 4.3. The TITO’s on FN (I) with respect to which φ : FN (I) → S is order-preserving
are in one-to-one correspondence with the T-cones in FQ(I) that contain D(φ).

Proof . Suppose ≤0 is a TITO on FN (I). Then φ is order-preserving if and only if:

for all x, y ∈ FN (I), x ≤0 y implies φ(x) ≤S φ(y).

The contrapositive of this is equivalent to

(φ× φ)−1(<S ) ⊆ <0

(here, treating an order ≤ on any set X as a subset of X ×X). And finally, this is the
case if and only if D(φ) ⊆ P (≤0).

Our next proposition provides useful criteria for formal integrality.
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Proposition 4.4. For any tomonoid S, the following are equivalent:
i) S is formally integral;

ii) for some surjective φ : FN (I) → S, C(φ) ⊆ FQ(I) is pointed;
iii) for all φ : FN (I)→ S, C(φ) ⊆ FQ(I) is pointed.

Proof . This is immediate from Proposition 4.1 and Lemma 4.3.

The following answers the question that appears on line 24 of table 1.1 of [G].

Corollary 4.5. Any totally ordered abelian group is formally integral. Any cancellative
tomonoid is formally integral.

Proof . Every cancellative tomonoid is a sub-tomonoid of a totally ordered abelian group
(e.g., [Sa], p.4), so by 4.2 it is enough to prove the first assertion. Let S be a totally ordered
abelian group and let φ : FN (I) → S be a surjective homomorphism. We need to show that

D(φ) is contained in a pointed cone. Let P • := { s ∈ S | s > 0 } and let φ̂ : FZ (I) → S be

the homomorphism induced by φ. Then, D(φ) = φ̂−1(P •). Suppose di ∈ D(φ), λi ∈ N

and
∑

i λidi = 0. Then
∑

i λiφ̂(di) = 0 and φ̂(di) ∈ P •, so all the λi vanish.

The following proposition is a special case of the compactness theorem of first order
logic. The theory we have developed, however, enables us to give a simple proof with no
reference to logicians’ concepts.

Proposition 4.6. Every positive tomonoid that is not formally integral contains a finitely
generated sub-tomonoid that is not formally integral.

Proof . Suppose that S is not formally integral and φ : FN (I) → S is a surjection.
Since C(φ, <S ) is not pointed, there is a relation of the form 0 = a1d1 + · · · akdk with
di ∈ D(φ, <S) and ai ∈ N. The di are determined by finitely many elements of S,
and therefore the offending relation exists in the portion of S generated by a finite set
{φ(εj) | j ∈ J }.

The following shows that that every positive tomonoid that is not formally integral
has associated with it a tomonoid whose failure to be formally integral is due solely to
order relations involving its largest finite element.

Proposition 4.7. Let S be a positive tomonoid.
a) If S/v is formally integral and u ≤S v then S/u is also formally integral.
b) Suppose that [0, v) does not have a largest element. If S/u is formally integral for all

u ∈ [0, v), then S/v is formally integral.
c) If S is a finitely generated positive tomonoid that is not formally integral, then there

is an element u0 ∈ S having an immediate successor v0 such that S/u0 is formally
integral and S/v0 is not formally integral.

Proof . a) The first assertion is immediate from the existence of the tomonoid morphism
πu : S/v → S/u. b) Suppose that S/u is formally integral for all u ∈ [0, v). Let φ : FN (I) →→
S/v be a surjection, let D := D(φ) and let C denote the cone in FQ(I) generated by D.
For each u ∈ [0, v), the difference set Du := D(πu ◦φ) generates a pointed cone—call it
Cu—in FQ(I). Moreover, if u0 ≤S u1, then Du0 ⊆ Du1 , so Cu0 ⊆ Cu1 . Now, if [0, v) does
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not have a largest element then D is equal to the union of the chain {Du | u ∈ [0, v) }, and
C is equal to the union of the chain {Cu | u ∈ [0, v) }. But an increasing union of pointed
cones is a pointed cone, so D is contained in a pointed cone. c) Let v0 be the least element
in { v ∈ S | S/v is not formally integral }. By part 2), [0, v0) has a largest element u0.

Suppose S is a nontrivial tomonoid generated by a single element e. Replacing the
order with its opposite if necessary, we may assume 0S <S e. Then it is easy to show that
either S is isomorphic to N (in the natural order) or S is isomorphic to N/a for some
integer a. From this, it is easy to see that S is formally integral. Later, we give examples
of three-generator positive tomonoids that are not formally integral. As for the remaining
possibility, we have the following.

Theorem 4.8. Every tomonoid generated by two elements is formally integral.

Proof . Suppose φ : N2 → S is a surjective monoid homomorphism. Unless S is trivial,
after exchanging coordinates in N2 and/or replacing ≤S with its opposite if necessary, we
may assume 0S <S φ((1, 0)). If φ((0, 1)) = 0S , then S is generated by a single element.
Assuming that neither generator is mapped to )S , there are two cases to consider: either
S is positive or it is not. We consider these in turn. (It is illuminating to rephrase the
following in terms of addition of directed segments, as in remarks following lemma 3.3.
This leads to an appealing, intuitive geometric argument. We have chosen a more formal
presentation for the sake of rigor.)

Case 1 : 0S <S φ((0, 1)). In this case, S is positive, and therefore D(φ) can contain no
pair (i, j) with both i ≤ 0 and j ≤ 0. If S is not formally integral, D(φ) is not contained
in a pointed cone. Then there are d = (−d1, d2) and e = (e1,−e2) such that:

a) d, e ∈ D(φ),
b) d1, d2, e1, e2 ∈ N, and
c) either:

◦ md = −ne for some positive integers m and n, or
◦ the angle formed by d and e (with vertex at (0, 0)) has (−1,−1) in its interior.

In either of the alternatives allowed by the last condition, we have

c′) d1e2 ≥ d2e1 ≥ 0,

so one of the following pairs of inequalities must be satisfied:

i) e1 < d1 and e2 < d2, or
ii) e1 ≤ d1 and e2 ≥ d2, or

iii) e1 > d1 and e2 > d2.

Note that ii) means that the directed segments (d− → d+) and (e− → e+) cross one
another. We will show that this is impossible. In the other two cases, one of the directed
segments is long enough that they do not cross. We will show that successive additions
produce a pair that does cross. In detail, if i) holds, then d + e is in D(φ) (by lemma
3.3), and d + e and e satisfy the original hypotheses on d and e. Moreover, d + e is
shorter than d. Similarly, if iii) holds, we may replace d and e with d and d + e, and
d + e is shorter than e. But such replacements cannot be repeated indefinitely, so after
a finite number of replacements, case ii) must arise. However, ii) is impossible because
it implies φ(e−) ≤S φ(e+) ≤S φ(d−) ≤S φ(d+) ≤S φ(e−), forcing all to be equal, which
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by assumption they are not. (Note that we use the hypothesis that S is positive for the
inequalities φ(e+) ≤S φ(d−) and φ(d+) ≤S φ(e−).)

Case 2 : φ((0, 1)) <S 0S . In this case, D(φ) contains all integer pairs (i, j) with 0 ≤ i
and j ≤ 0 and contains no pair (i, j) with both i ≤ 0 and 0 ≤ j. If S is not formally integral,
D(φ) is not contained in a pointed cone, so there are d = (d1, d2) and e = (−e1,−e2) in
D(φ), such that:

• d1 6= 0 and e2 6= 0,
• d1, d2, e1, e2 are all greater than or equal to 0, and
• either:

◦ md = −ne for some integers m and n, or
◦ the angle formed by d and e (with vertex at (0, 0)) has (−1, 1) in its interior.

Since e+ = 0, d + e ∈ D(φ), by Lemma 3.3. There are two possibilities: either d + e ∈
{ (i, j) | i ≤ 0 & 0 ≤ j }—which is already the contradiction we seek—or one of the pairs,
{ d, d+e } or {d+e, e }, satisfy the original hypotheses on the pair {d, e }, but with shorter
vectors. As in case 1, we may repeat the process until a contradiction is reached.

5. Examples on 3 generators.

In this section, we give examples of three-generator monoids that are not formally integral.
Previously, the minimum number of generators in any known example was 4. Here is a brief
history. [HI] contains an amazing example of a tomonoid with 9 generators and 80 elements
that is not formally integral but which has no 8-generator sub-tomonoid that fails to be
formally integral. The paper [GIR] contains an example of a 4-generator tomonoid with
16 elements that is not formally integral. In [I1], Isbell generalizes the construction of [HI]
to obtain, for each n ≥ 6, a finite tomonoid with n generators that is not formally integral
and has no sub-tomonoid on fewer than n generators that fails to be formally integral.
(This means, incidentally, that the first order theory of formally integral tomonoids does
not have a axiomatization by a set of positive sentences involving finitely many variables.)
In [I2], Isbell constructs a 4-generator tomonoid different from the one in [GIR] that is not
formally integral.

For any a, b, c, d ∈ N, 〈 a, b, c 〉 will denote the sub-tomonoid of N generated by a,
b and c, and 〈 a, b, c 〉/d will denote the tomonoid obtained by identifying all elements of
〈 a, b, c 〉 that are greater than or equal to d with infinity (cf. the definition in section 1).

Let {32∗}∪〈 9, 12, 16 〉/30 denote the monoid obtained from 〈 9, 12, 16 〉/30 by adjoining
one additional element, denoted 32∗. This element is to satisfy 16+16 = 32∗ and the whole
monoid is to be ordered as follows

0 < 9 < 12 < 16 < 18 < 21 < 24 < 25 < 27 < 28 < 32∗ < ∞.

All the relations that do not involve 32∗ are as in N, so to check that this order is
translation-invariant it suffices to note that any positive translate of the pair (32∗,∞)
is (∞,∞) and that if (32∗,∞) is a positive translate of (x, y), then x < y. Now, in this
tomonoid we have the following relations:

24 = 2 · 12 < 9 + 16 = 25

27 = 3 · 9 < 12 + 16 = 28

32∗ = 2 · 16 < 2 · 9 + 12 = ∞.
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But note that in N, the following pair of inequalities

2 y ≤ x + z

3 x ≤ y + z

implies that

3 x + 2 y ≤ x + y + 2 z,

and hence that

2 x + y ≤ 2 z.

Therefore, {32∗} ∪ 〈 9, 12, 16 〉/30 cannot be a quotient of any tomonoid with underlying
monoid N3. In fact, if φ : N3 → {32∗}∪〈 9, 12, 16 〉/30 is given by φ((i, j, k)) = 9 i+12 j +
16 k, then the cone C(φ) ⊆ Q3 generated by D(φ) is the closed half-space { (x, y, z) | 0 ≤
3 x + 4 y + 5 z }.

This example has 12 elements. The following quotient of it provides an example of a
non-formally-integral tomonoid with only 9 elements:

0 < 9 < 12 < 16 < 18 < {21, 24} < {25, 27} < {28, 32∗} < ∞.

As mentioned in the introduction, Whipple has shown that all positive tomonoids with 8
or fewer elements are formally integral.

Our second example is a three-generator monoid for which the cone generated by the
difference set is all of Q3. It is constructed from 〈 20, 25, 27 〉. Here is table of the first 22
elements in this monoid, together with their factorizations (s = 20 i + 25 j + 27 k):
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] s i j k
−− − −− − −− −− −−
0 0 0 0 0
1 20 1 0 0
2 25 0 1 0
3 27 0 0 1
4 40 2 0 0
5 45 1 1 0
6 47 1 0 1
7 50 0 2 0
8 52 0 1 1
9 54 0 0 2
10 60 3 0 0
11 65 2 1 0
12 67 2 0 1
13 70 1 2 0
14 72 1 1 1
15 74 1 0 2
16 75 0 3 0
17 77 0 2 1
18 79 0 1 2
19 80 4 0 0
20 81 0 0 3
21 85 3 1 0
22 87 3 0 1 .

The monoid {85∗} ∪ 〈 20, 25, 27 〉/81 is constructed as in the preceding example, with
85∗ = 3 · 20 + 25 the largest element that is less than ∞ = 81. It is easy to check that this
is a tomonoid. We have the relations:

47 = 20 + 27 < 2 · 25 = 50

79 = 25 + 2 · 27 < 4 · 20 = 80

85∗ = 3 · 20 + 25 < 3 · 27 = ∞.

But in N, the following pair of inequalities

x + z ≤ 2 y

y + 2 z ≤ 4 x

implies that

x + y + 3 z ≤ 4 x + 2 y,

and hence that

3 z ≤ 3 x + y.
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Therefore, {85∗} ∪ 〈 20, 25, 27 〉/81 cannot be a quotient of any tomonoid with underlying
monoid N3. In fact, if φ : N3 → {85∗} ∪ 〈 20, 25, 27 〉/81 is given by φ((i, j, k)) = 20 i +
25 j + 27 k, then D(φ) contains (4,−1,−2), (−1, 3,−2), (−4, 0, 3), as well as (−3,−1, 3)—
the last as a consequence of the relation 85∗ < 81 = ∞. The first three vectors are a basis
for Z3, and twice the first plus the second and third is (3, 1,−3), so (3, 1,−3) is in the
interior of the cone generated by the first three. Thus, the cone generated by D(φ) is all
of Q3.

6. Further criteria for formal integrality.

Suppose that S is a positive tomonoid and S1, S2 ⊆ S are sub-tomonoids such that S =
〈S1, S2 〉, i.e., S is generated by S1 ∪ S2. Suppose further that S1 and S2 are formally
integral. Under what conditions can we conclude that S formally integral? Theorem 6.1,
which is a generalization of 4.8, addresses an instance of this problem that is particularly
relevant to intended applications to ring theory, as we explain in §8. The proof follows the
pattern of the proof of 4.8, but with substantial added complications.

Theorem 6.1. Suppose that S = 〈S1, c 〉, where S1 is (isomorphic to) a sub-tomonoid
of N/w and c is an element of S. Let π : N → N/w be the canonical map, and let
T := π−1(S1). Suppose that there is a positive integer M ∈ T such that for any integer
n, M ≤ n implies n ∈ T (hence, π(n) ∈ S1 for all integers n ≥ M ). Suppose also that
π(M) <S c. Then S is formally integral.

Proof : Let D ⊆ Z ⊕ Z be the set consisting of all pairs that are of one of the following
forms:

• (−t, n), where t ∈ T , n ∈ N and π(t) <S n c,
• (t,−n), where t ∈ T , n ∈ N and n c <S π(t).

The significance of this is that the inequalities that define these pairs, together with the
TITO’s on S1 and 〈c〉, generate ≤S . and more conceptual proof can will give

We complete the proof by proving two assertions. In the following, three TITO’s are
mentioned: < and ≤ (no subscripts) refer to the natural order in N or T ⊆ N, <S and
≤S refer to the given TITO on S, and finally <1 and ≤1 appearing in assertion 2 refer to
a TITO on T ⊕N. The homomorphism

T ⊕N→ S; (t, n) 7→ π(t) + nc

is used frequently.
Assertion 1: D is contained in a P-cone. We prove this by an argument that is similar

to that used in the case 1 part of the proof of 4.8. Suppose that assertion 1 fails. Since
D ∪ {0, 0} contains T ⊕ {0N} and {0T } ⊕N, the cone in Q ⊕Q that D generates must
contain T ⊕ N. Therefore, there must be d = (−d1, d2) and e = (e1,−e2) that satisfy
condition c) from the proof of 4.8. As argued there, one of the three pairs of inequalities
i), ii) or iii) must be satisfied. Suppose that i) holds. Then e2 6= 0, for if e2 = 0 then
e1 6= 0 so d2 = 0 by c′) (in proof of 4.8), but this contradicts i). Using c′) again and i)

(e2 + 1) e1 ≤ e2 d1

16



so
e1 +

e1

e2
≤ d1.

From
e2 c <S π(e1),

it follows that
e2π(M ) <S π(e1)

so
e2 M < e1.

Therefore, e1 +M ≤ d1, so d1− e1 ∈ T . Then the same argument as in the proof of lemma
3.3 shows that d + e ∈ D, and the pair (d + e, e) satisfies the original conditions on (d, e).
Suppose that iii) holds. It is not possible that e1 − d1 ≤ M , because if so then

(d2 + 1) c ≤S e2 c <S π(e1) ≤S π(d1 + M ),

while on the other hand
π(d1) <S d2 c,

and
π(M ) ≤S c

so
π(d1 + M ) ≤S (d2 + 1) c.

Hence e1 − d1 > M , and therefore e1 − d1 ∈ T . Using the proof of 3.3, d + e ∈ D and
the pair (d, d + e) satisfies the original conditions on (d, e). As in the proof of 4.8, the
outcomes of the two cases considered show that eventually case ii) must arise, but as in
4.8, this is impossible. This completes the proof of assertion 1.

Assertion 2: The homomorphism

T ⊕N→ S; (t, n) 7→ π(t) + nc

is order-preserving for any TITO ≤1 on T ⊕N that is induced by a T-cone in Z⊕Z that
contains D. To prove this, it suffices to show that for all s, t ∈ T , m,n ∈ N:

(∗) π(s) + mc <S π(t) + n c implies (∗∗) (s, m) <1 (t, n).

Let k := min{m,n}. From (∗), it follows that π(s) + (m − k) c <S π(t) + (n − k) c. If
we succeed in deducing from this that (s, m− k) <1 (t, n− k), then we can conclude (∗∗)
(from translation-invariance and the fact that (s, m) 6= (t, n)). In fact, if m = n, then
(∗∗) follows immediately (from these). Otherwise, we need to consider two cases: Case 1:
π(s) + m c <S π(t) and m 6= 0. Then π(s + m M ) <S π(t), so there is u ∈ T such that
u + s = t. By cancellation in S, mc <S π(u), so (u,−m) ∈ D. Thus, (0,m) <1 (u, 0),
so (s, m) <1 (t, 0). Case 2: π(s) <S π(t) + nc and n 6= 0. If π(s) ≤S π(t), then
(s, 0) ≤1 (t, 0) ≤1 (t, n) and since (s, 0) 6= (t, n), we have (s, 0) <1 (t, n). If π(t) <S π(s),
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we consider sub-cases. If s < t + nM , then (s, 0) <1 (t + nM, 0) <1 (t, n), which is all
that is needed. If s ≥ t + n M , there is u ∈ T such that s = t + u. By cancellation in S,
π(u) <S n c, so (−u, n) ∈ D. Thus (u, 0) <1 (0, n), so (s, 0) <1 (t, n). This completes the
proof of assertion 2.

To finish the proof of the theorem, it suffices to observe that (T ⊕N,≤1) is a sub-
tomonoid of a formally integral tomonoid and that S is a quotient of (T ⊕N,≤1).

7. Nil tomonoids.

In this section, we examine the structure of finite nil tomonoids and explain and justify
a conjecture that states that any obstruction to formal integrality that can occur in a
positive tomonoid occurs in a nil tomonoid. Let S be a positive tomonoid and let s ∈ S.

If S is archimedean, it may or may not have a largest element. A nil tomonoid is a
positive archimedean tomonoid that has a largest element. Thus, a tomonoid S is nil if
and only if it is positive, has an absorbing element ∞ and for all x ∈ S \{0} there is n ∈ N
such that nx = ∞. A nil tomonoid is finitely generated if and only if it is finite.

In the remainder of this section, S will be a finite nil tomonoid with minimal generating
set {s1 <S · · · <S sn} and φ : Nn →→ S will be the surjection defined by setting φ(εi) = si.
As before, C(φ) denotes the cone in Qn generated by D(φ).

Lemma 7.1. C(φ) is a polyhedral convex cone, which is pointed if and only if S is formally
integral.

Proof . The set D(φ) is not finite, since there are infinitely many distinct differences y− x
with φ(x) < φ(y) = ∞. Our task is to show that C(φ), nonetheless, has only finitely many
extreme rays. This will follow, as we now show in detail, from the fact that lattice ideals
in Nn are finitely generated. Let E := φ−1(∞). Then E is an ideal in Nn with finite
complement E′ ⊆ Nn. There is a unique minimal generating set G for E, and G is finite.
(In other words, E = ∪{ g+Nn | g ∈ G }, and equality fails if any element of G is omitted.)
Let x ∈ E′, and let y ∈ E. Any cone that contains all the εi as well as { g − x | g ∈ G }
also contains y − x. Thus, C(φ) is generated by differences y − x that satisfy x ∈ E′ and
y ∈ E′ ∪G. There are only finitely many such differences. The last assertion is immediate
from 4.4.

If instead of φ we had started with an arbitrary surjection, then E′ could fail to be
finite, and the conclusion of the lemma could fail. It suffices to require that φ−1(0S) =
{0Nm}; we leave the details to the reader.

In the next two results, we use the dual cone C∗(φ) of C(φ). The definition is

C∗(φ) := { ξ ∈ Qn | ξ · c ≥ 0 for all c ∈ C(φ) }.

Observe that C∗(φ) is contained in the positive orthant of Qn, since—S being positive—
C(φ) contains the positive orthant of Qn. The interior of C∗(φ) is the set of ξ such that
ξ · c > 0 for all c ∈ C(φ).
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Proposition 7.2. Every finite formally integral nil tomonoid is a quotient of a sub-
tomonoid of N.

Proof . Assume S is formally integral. Using the notation from the previous proof, let
a = (a1, . . . an) ∈ Nn be any integral vector in the interior of the dual cone of C(φ). Now,
φ(x) <S φ(y) implies a · x < a · y or, taking the contrapositive,

a · y ≤ a · x implies φ(y) ≤S φ(x). (∗)

Let Ta be the sub-tomonoid of N generated by the components ai of a. Define ψ a : Ta → S
by ψ a(a · x) := φ(x); ψ a is well-defined, since if a · x = a · x′, then φ(x) = φ(x′), by (∗).
Since ψ a(a · x + a · y) = ψ a(a · (x + y)) = φ(x + y) = φ(x) + φ(y) = ψ a(a · x) + ψ a(a · y),
ψ a is additive, and (∗) ensures that ψ a is order-preserving.

Let T denote the set of pairs (T, ψ ), where T = 〈a1, . . . , an〉 ⊆ N and ψ : T → S is a
surjective tomonoid morphism with ψ (ai) = si. For each integral element a = (a1, . . . , an)
in the interior of C∗(φ), let (Ta, ψ a) be the pair described in the preceding proof.

Corollary 7.3. Suppose S is a formally integral finite nil tomonoid. The function

a 7→ (Ta, ψ a)

from the set of integer points in the interior of C∗(φ) to T is a bijection.

Proof . To see that it is injective, observe that a1 < · · · < an is a minimal generating set
for Ta. Suppose a 6= a′. Without loss of generality, ai = a′i for i < m, and am < a′m. Then
am 6∈ Ta′ , so Ta 6= Ta′ . To see that it is surjective, suppose that (〈b1 < · · · < bn〉, ψ b) ∈ T ,
so ψ b(bi) = si. For any d ∈ D(φ), d− · s <S d+ · s, so ψ (d− · b) <S ψ (d+ · b), so 0 < d · b.
This means that b is in the interior of C∗(φ). Therefore, a 7→ (Ta, ψ a) is surjective.

Let us consider the meaning of 7.3 from a geometric standpoint.
The corollary makes it easy to describe the sub-tomonoids of N of which a given nil

tomonoid is a quotient. We illustrate with an example. Let S = 〈9, 12, 16〉/33 = {0 < 9 <
12 < 16 < 18 < 21 < 24 < 25 < 27 < 28 < 30 < 32 < 33 = ∞}, and let φ : N3 → S be
defined by φ(ε1) = 9, φ(ε2) = 12 and φ(ε3) = 16. Then C(φ) has edges (1,−2, 1), (1, 2,−2)
and (−3, 1, 1), and C∗(φ) has edges (2, 3, 4), (4, 5, 7) and (3, 4, 5). The shortest integral
vector in the interior of C∗(φ) is (9, 12, 16). Since C∗(φ) is unimodular, the other interior
integer points can be written in the form (a1, a2, a3) = β1(2, 3, 4) + β2(4, 5, 7) + β3(3, 4, 5),
where β1, β2, β3 ∈ N \ {0}. For any such point, 〈a1, a2, a3〉/(a1 + 2a2) is order-isomorphic
to S.

If, as in this example, every finite element of S has “unique factorization” (i.e., for all
b, b′ ∈ Nn,

∑n
i=1 bisi =

∑n
i=1 b′isi <S ∞ implies b = b′), then ψ factors as Ta → Ta/da →

S, where da is the least element of Ta that ψ a takes to ∞, and Ta/da → S will be a
bijective tomonoid morphism—in other words, S will be order-isomorphic to Ta/da. Even
if S does not have unique factorization, we may find an integral vector b in the interior of
C∗(φ) so that Tb/db does. Simply choose any a in the interior of C∗(φ). If δ ∈ Qn has
sufficiently small components then a + δ remains in the interior of C∗(φ). Moreover, for
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any finite set X ⊆ Nn we can choose arbitrarily small δ so that the numbers ξ · (a + δ)
(ξ ∈ X) are all distinct. Let X be the set of factorizations of all the finite elements of S
and let b = k(a + δ) where k is the least common multiple of the denominators in a + δ.

We now join the results of this section with the previous section. Suppose S is a finite
nil tomonoid that is not formally integral. There are elements u <S v of S such that v is
the immediate successor of u, and S/u is formally integral and S/v is not. By the above,
S/u is a quotient of a sub-tomonoid of N. Let s1, . . . , sn be a minimal set of generators
for S/u, and let 〈a1, . . . , an〉 ⊆ N map onto S/u by ai 7→ si. Let d be the least element
of 〈a1, . . . , an〉 that maps to ∞S/u, and let T := 〈a1, . . . , an〉/d. We have a surjection
π : T →→ S/u with π−1(∞S/u) = {∞T }.

This section is not finished.

8. Applications to ordered rings.

After giving some definitions and historical background, we shall describe how the material
on monoids presented in this paper relates to ordered rings. All rings discussed in this
paper are commutative and to have a unit element. A totally ordered ring—or toring , for
short—is a ring A equipped with a total order ≤ that satisfies the following conditions:
• for all a, b, c ∈ A, if a ≤ b then a + c ≤ b + c, and
• for all a, b, c ∈ A, if a ≤ b and 0 ≤ c then ac ≤ bc.

A toring morphism is an order-preserving ring homomorphism between torings. An ideal
I in a toring A is said to be convex if for all x, y ∈ A,

(0 ≤ x ≤ y & y ∈ I) ⇒ x ∈ I.

The kernel of any toring morphism is convex and if I is convex, then A/I is naturally a
toring.

In recent years, torings without nilpotents have played an important role in real alge-
braic geometry, but little consideration has be given to phenomena related to nilpotency
in torings. We make a few historical observations connected to this. Totally ordered fields
played a significant role in Hilbert’s Grundlagen der Geometrie . This work, in fact, con-
tained the original motivation for Hilbert’s 17th problem; see [DP]. The modern algebraic
theory of ordered fields was initiated by Artin and Schreier in their solution of this problem.
Artin and Schreier called a field formally real if it admits a total order, or equivalently, if
the negative of the unit element is not equal to a sum of squares. The concept of a formally
real field has a generalization that is extremely useful in real algebraic geometry: a real
ring is a ring that can be embedded in a product of formally real fields. The most impor-
tant examples are the real coordinate rings of real algebraic varieties. Each total ordering
of such a ring has a precise geometric meaning—it corresponds to a prime filter of closed
semialgebraic sets; see [BCR]. This correspondence accounts for the importance of totally
ordered domains in real algebraic geometry. It is obvious that a real ring has no nilpotent
elements. With geometric applications in mind, Brumfiel derived a few basic results about
orderings of rings with nilpotents in [B], but his observations in this connection do not
appear to have fed into any further work in real algebraic geometry. Rings with nilpotents,
however, do arise naturally in geometric settings. A ring of function germs (with respect
to a prime filter of closed semialgebraic sets) modulo an ideal of germs vanishing to some

20



(fixed) order is an example. (It is worth noting that any toring that is not a domain
contains nilpotent elements, for if 0 ≤ x ≤ y and xy = 0, then x2 = 0.)

In the purely algebraic theory of ordered rings, there are two important contributions
prior to 1970 that are particularly relevant to torings with nilpotents. First is the work of
Hion [Hi], and second is the work of Henriksen and Isbell [HI]. Together, these provide a
strong connection between torings (possibly with nilpotents) and tomonoids.

We now summarize the relevant parts of Hion’s work in modern notation. Let (A,≤)
be a toring. Let A+ denote the (multiplicative) tomonoid of elements of A that are greater
than or equal to 0. Two elements a, b ∈ A+ are said to be additively archimedean equivalent
if there are m,n ∈ N such that b ≤ ma and a ≤ nb. If this is so, we write a ∼ b. It is
easy to see that ∼ is an equivalence relation on A+. The class of a is denoted [a], and
the set of all classes is denoted H(A). Obviously, [a] is an interval in A+, and one easily
verifies that if a ∼ b and c ∼ d, then ac ∼ bd. Thus, ∼ is an order-congruence on A+, so
H(A) has a natural tomonoid structure. In order to have notation that is compatible with
standard valuation theory (which this construction generalizes), in H(A) we use additive
notation and the opposite of the natural order. Specifically, we define [a] + [b] := [ab] and
put [a] ≤ [b] iff b ≤ a. We view H(A) as a tomonoid with this structure, and we call it
the Hion tomonoid of A. Let h : A → H(A) be defined by h(a) := [|a|]. As with the
archimedean valuation on a totally ordered field, we have:
• 0 ≤ a ≤ b ⇒ h(b) ≤ h(a) ≤ h(0) = ∞,
• h(ab) = h(a) + h(b),
• h(a + b) ≥ min{h(a), h(b) }, with equality whenever h(a) 6= h(b).

Let H be a tomonoid. We call H a Hion tomonoid if it has a largest element ∞, this
element is absorbing and for all x, y, z ∈ H :

x + z = y + z 6= ∞ ⇒ x = y.

A Hion tomonoid morphism is a tomonoid morphism φ : H → K between Hion tomonoids
that satisfies φ(x) = φ(y) 6= ∞J ⇒ x = y and φ(∞H ) = ∞J . It follows from the
isomporphism theorems for rings and the fact that the kernel of a toring morphism is
convex that H is a functor from the category of torings to the category of Hion tomonoids.
It is not full.

Theorem 8.1. ([Hi]) If A is a toring, then H(A) is a Hion tomonoid. Moreover, for any
Hion tomonoid H , there is a toring A such that H(A) is isomorphic to H .

Because Hion’s original paper does not seem to have been translated from the Russian
and therefore may not be accessible to some readers, we provide a sketch of the proof. The
proof of the second part involves a construction with monoid rings, which we will explain
now, before giving the the proof of 8.1. If R is a ring and S is a monoid, the monoid ring
R[S] is the set of all finite formal sums r1X

s1 + · · ·+ rnXsn, where X is an indeterminate,
ri ∈ R and si ∈ S. Multiplication defined by the rule XsXt = Xs+t and distributivity.
Suppose S is a tomonoid. An element g ∈ R[S] is said to be written in normal form when
it is written as a sum of non-zero terms with exponents of ascending order:

g = r1X
s1 + · · ·+ rnXsn , with ri 6= 0 and s1 < s2 < · · · < sn.
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If S has a largest element ∞, let R[S]h denote the quotient of R[S] obtained by identifying
X∞ with 0, ordered in such a way that an element a1X

h1 + · · · in normal form is positive
iff a1 > 0A.

Lemma 8.2. If A is a toring without zero-divisors and H is a Hion tomonoid, then A[H ]h
is a toring. Moreover, A[ ]h is a functor from the category of Hion tomonoids to torings.

Proof . Sums of positive elements are clearly positive, so the only thing that requires
checking is that products of positives are positive. Suppose f = q1X

s1 + · · · + qmXsm

and g = r1X
t1 + · · · + rnXtn are positive. Then the product fg is a sum of terms of the

form qirjX
si+tj . For any i and j, s1 + tj and si + t1 are between s1 + t1 and si + tj , so if

s1+t1 = si +tj then s1+t1 = s1+tj = si+t1. Thus, by the Hion condition, if s1+t1 6= ∞,
then s1 + t1 6= si + tj for any pair (i, j) 6= (1, 1). With the assumption that A contains
no zero-divisors, this shows that if fg 6= 0, then the leading term of fg is q1r1X

s1+t1 . We
leave the routine verification of the last assertion to the reader.

Proof of 8.1 . For the first part, suppose a, b, c ∈ A and h(a) < h(b). Then n|b| ≤ |a| for all
n ∈ N, and therefore n|bc| ≤ |ac| for all n ∈ N. Suppose h(bc) = h(ac). Pick m ∈ N such
that |ac| ≤ m|bc|. Then we get n|bc| ≤ m|bc| for all n ∈ N, so |bc| = 0. For the second
part, simply note that H(Z[H ]h) = H .

We turn now to the contributions of Henriksen and Isbell. Motivated by Birkhoff’s
theorem on equational classes in universal algebra, Henriksen and Isbell show in [HI] that
all totally ordered fields satisfy the same lattice-ring identities, and they introduce the
class of formally real f-rings, which consists of those lattice-ordered rings that satisfy all
lattice-ring identities that are true in a totally-ordered field.* For our purposes, the most
important result of Henriksen-Isbell is the following—which may as well serve for us as a
definition of formally real torings.

Theorem 8.3. ([HI]) A toring is formally real if and only if it is a quotient of a totally
ordered domain by a convex ideal.

Henriksen-Isbell presented an example of a tomonoid algebra with 9 generators that
is not formally real and that has the additional property that all eight-generator sub-
torings are formally real. In a subsequent paper of remarkable originality, Isbell showed,
by constructing algebras over appropriate (non-formally integral) finite Hion tomonoids,
that the equational theory of formally real f -rings does not have a finite base, or even a
base with a finite number of variables; see [I1]. The authors of [HI] and [I1] did not refer

* This paper is actually quite a tour de force. Among other things, they proved that
the free formally real f -ring on n generators is isomorphic to the sub-f -ring of the ring
of all real-valued functions on Rn generated by the polynomials with integer coefficients,
thus solving a problem of Birkhoff and Pierce [BP]. While writing [HI], Henriksen and
Isbell formulated the question now known as the Pierce-Birkhoff Conjecture; see [M] for
historical notes. This conjecture is a sharpening of Henriksen-Isbell’s description of the
free formally real f-ring on n generators. It asserts that the free formally real R-f -algebra
on n generators is isomorphic to the R-f-algebra of all piecewise polynomial functions on
Rn. At present, only the n = 1 and n = 2 cases are known to be true; see [Mah].
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to the Hion condition, but it is implied by a “unique factorization” condition that they
mention explicitly, which holds in tomonoids they use.

Definition. An r-tomonoid is a tomonoid that is isomorphic (as a tomonoid) to some
S/K, where S is a sub-tomonoid of a totally ordered abelian group, K ⊆ S is an upper
interval and S + K ⊆ K.

Proposition 8.4. If R is a formally real toring, thenH(R) is an r-tomonoid. In particular,
H(R) is formally integral.

Proof . There a toring surjection φ : D → R, where D is a totally ordered domain. Let
F be the ordered field of fractions of D. Then H(D) ⊆ H(F ), and the latter is a totally
ordered group. To finish, it suffices to show that if [φ(x)] = [φ(y)], then either [x] = [y] or
[φ(y)] = ∞. Suppose x, y ∈ D+, [x] < [y] and φ(y) 6= 0. Then x > ny for all n ∈ Z, and
x > z for all z ∈ ker φ. It follows that [φ(x)] < [φ(y)].

Not every formally integral Hion tomonoid is an r-tomonoid. Let U be the quotient
of 〈9, 12, 16〉/33 obtained by identifying 30 and 32. Using a, b and c to denote 9, 12 and
16, respectively, we have:

U = { 0 < a < b < c < 2a < a + b < 2b < a + c < 3a < b + c < 2a + b = 2c < ∞}.

Then U is a formally intgral Hion tomonoid but it is not an r-tomonoid, since 2a + b < 2c
in any totally ordered group in which 2b < a + c and 3a < b + c.

It is not hard to see that if H is an r-tomonoid, then for any totally ordered domain
A, A(H) is formally real. However, we have not been able to answer the following:

Problem 5. Is the converse of 8.4 true—that is, if H(R) is an r-tomonoid, does it follow
that R is formally real?

9. Implementation of a search algorithm

Section not yet written.
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