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Abstract. In the study of partition theory and q-series, identities that relate series to infinite
products are of great interest (such as the famous Rogers-Ramanujan identities). Using a recent

result of Zagier, we obtain an infinite family of such identities that is indexed by the positive
integers. For example, if m = 1, then we obtain the classical Eisenstein series identity
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If m = 2 and
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denotes the usual Legendre symbol modulo 3, then we obtain
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We describe some of the partition theoretic consequences of these identities. In particular, we find

simple formulas that solve the well-known problem of counting the number of representations of
an integer as a sum of an arbitrary number of triangular numbers.

1. Introduction and Statement of Results

Recall the following identity of Euler:

(Euler)

∞
∏

n=1

(1 − qn) =

∞
∑

k=−∞

(−1)kq(3k2+k)/2.

Note that the left hand side of Euler’s identity is related to partitions of integers into distinct
parts. More precisely, each partition of n into an odd number of distinct parts adds −1 to
the coefficient of qn and each partition of n into an even number of distinct parts adds +1.
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Therefore, this identity, known as Euler’s pentagonal number theorem, shows us that the
number of partitions of n into an odd number of distinct parts is equal to the number of
partitions of n into an even number of distinct parts except when n is a pentagonal number,
that is, a number of the form (3k2 + k)/2.

There are many other identities of a similar form equating an infinite q-series product to
an infinite sum. Perhaps the most famous are the Rogers-Ramanujan identities, one of which
follows:

(Rogers-Ramanujan)

∞
∏

n=0

1

(1 − q5n+2)(1 − q5n+3)
= 1 +

∞
∑

n=1

qn2+n

(1 − q)(1 − q2) · · · (1 − qn)
.

A combinatorial interpretation of this identity establishes that the number of partitions of an
integer n into parts that are congruent to 2, 3 (mod 5) equals the number of partitions of n in
which any two summands differ by at least 2 and all summands exceed 1.

The purpose of this paper is to use a master theorem of Zagier [Z] previously conjectured
by Kac and Wakimoto [K-W] to prove a natural infinite family of analogous simple q-series
identities that relate infinite products to generating functions for certain restricted partition
functions. Through a combinatorial examination of these identities, we obtain closed explicit
formulas for the number of representations of integers as a sum of an arbitrary number of
triangular numbers. We note here that the general problem of finding formulas for the number
of representations of n as a sum of squares and triangular numbers has seen great advances in
the recent works of Milne, Ono, and Zagier (see [M], [O], [Z]).

Before we state the main theorems we must offer some notation. Throughout, if m is a
positive integer, then let s(m) denote the integer

(1.1) s(m) :=

[

m + 1

2

]

.

For convenience, we define the following set of vectors which will determine the summands in
our partition functions.

Definition 1.1. If m is a positive integer, then let S(m) denote the set of integral vectors
Λ = (λ1, λ2, . . . , λs(m)) for which the following hold:

(i) λ1 > 0 and if j > i, then λi > λj > 0.
(ii) For every i we have λi ≡ m (mod 2).

(iii) For every i we have λi 6≡ 0 (mod 2m + 2).
(iv) For every i 6= j we have λi 6≡ ±λj (mod 2m + 2).

Further, define subsets S±(m) of S(m) in the following manner:

(1.2) S+(m) := {Λ ∈ S(m) : the number of λi (mod 2m + 2) > m + 1 is even} ,

(1.3) S−(m) := {Λ ∈ S(m) : the number of λi (mod 2m + 2) > m + 1 is odd} .

Now we can state our primary results, which will be proved in Section 2:
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Theorem 1.1. If m ≥ 1 is odd, then

∑

Λ∈S+(m)

q(λ1+···+λs(m))/2

(1 − qλ1) · · · (1 − qλs(m))
−

∑

Λ∈S−(m)

q(λ1+···+λs(m))/2

(1 − qλ1) · · · (1 − qλs(m))

= q(m+1)2/8
∞
∏

n=1

(1 − q2(m+1)n)2m+2

(1 − q(m+1)n)m+1
.

Theorem 1.2. If m ≥ 1 is even, then

∑

Λ∈S+(m)

q(λ1+···+λs(m))/2

(1 − qλ1) · · · (1 − qλs(m))
−

∑

Λ∈S−(m)

q(λ1+···+λs(m))/2

(1 − qλ1) · · · (1 − qλs(m))

= q(m2+2m)/8
∞
∏

n=1

(1 − qn)

(1 − q2n)2
(1 − q2(m+1)n)2m+2

(1 − q(m+1)n)m+1
.

Before stating some partition theoretic interpretations of these identities, we must offer
additional definitions.

Definition 1.2. If m is a positive integer, then let P±(n, m) denote the number of partitions
of n of the form

n =

s(m)
∑

i=1

(2ni + 1)λi,

where Λ = (λ1, . . . , λs(m)) ∈ S±(m) and each ni ≥ 0.

In simple terms, the function P±(n, m) counts the number of partitions of n into parts that
are elements of a vector Λ ∈ S±(m), with odd multiplicity for each part. Clearly, for a fixed
m,

(1.4)
∑

Λ∈S±(m)

q(λ1+···+λs(m))

(1 − q2λ1) · · · (1 − q2λs(m))
=

∞
∑

n=1

P±(n, m)qn,

so the left side of our theorems is the difference of the generating functions for P±(n, m).
Moreover, the infinite products in our theorems are related to the generating functions for

the number of representations of an integer as a sum of triangular numbers, i.e. numbers of
the form (k2 + k)/2 with k ≥ 0. If k is a positive integer, then let T (n, k) denote the number
of representations of n as a sum of k triangular numbers. A well known identity due to Jacobi
implies that

(1.5)
∞
∑

n=0

T (n, k)qn =

(

∞
∏

n=1

(1 − q2n)2

(1 − qn)

)k

.

In view of (1.4) and (1.5) it is simple to verify the following corollaries of Theorems 1.1 and
1.2, which give partition theoretic formulas for T (n, k).
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Corollary 1.3. If k ≥ 2 is even, then

T (n, k) = P+

(

2kn +
k2

4
, k − 1

)

− P−

(

2kn +
k2

4
, k − 1

)

.

Corollary 1.4. If k ≥ 1 is odd, then

T (n, k) =
∞
∑

j=0

(

P+

(

2kn +
k2 − 1

4
− j2 − j, k − 1

)

− P−

(

2kn +
k2 − 1

4
− j2 − j, k − 1

))

.

Remark. Observe that Corollaries 1.3 and 1.4 completely characterize the number of repre-
sentations of every integer n as a sum of an arbitrary number of triangular numbers in terms
of the partition functions P±(n, k). One should compare these results with those appearing in
[M] where explicit formulas of a different type are obtained for T (n, k) for those k of the form
4s2 and 4s2 + 4s. It would be very interesting to obtain a combinatorial proof of these results.

Along with (1.4), Theorems 1.1 and 1.2 immediately imply the following corollaries.

Corollary 1.5. If k ≥ 2 is even, then for every non-negative integer n we have

P+(n, k − 1) ≥ P−(n, k − 1).

Furthermore, if n 6≡ k2/4 (mod 2k), then

P+(n, k − 1) = P−(n, k − 1).

Corollary 1.6. If k ≥ 2 is even and n is a positive odd integer, then

P+(n, k) = P−(n, k).

Remark. If k ≥ 4 is even and n ≡ k2/4 (mod 2k), then P+(n, k − 1) > P−(n, k − 1) by
Gauss’ Eureka Theorem (i.e. T (n, 3) > 0 for all n). When k = 2, an easy analysis shows that
P+(n, 1) = P−(n, 1) for a set of positive integers n with arithmetic density one.

One may also make the observation that the right hand side of the identities of Theorems
1.1 and 1.2 are quotients of powers of Dedekind eta-functions. In Section 3 we use well known
results on such eta-products to show that the generating function for P+(n, m) − P−(n, m) is
a holomorphic integer weight modular form. Then, using a powerful result of Serre, we obtain
the following corollary:

Corollary 1.7. If k is a positive integer and M is any integer, then

P+(n, k) ≡ P−(n, k) (mod M)

for a set of positive integers n with arithmetic density 1.

Notice that Corollary 1.7 is a weak analog of Euler’s pentagonal number theorem mentioned
above.
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2. Proof of Theorems 1.1 and 1.2

Our proof of Theorems 1.1 and 1.2 relies on the Kac-Wakimoto Conjecture, which was
proved by Zagier. The functions

Θ0(x) :=

∞
∏

n=1

(1 − q2n)(1 − q2n−1x)(1 − q2n−1x−1)

Θ1(x) :=
∞
∏

n=1

(1 − q2n)(1 − q2n−2x)(1 − q2nx−1)

appear in the result, where the complex number q is fixed throughout this section. To prove
our theorems, we use the following form of the Conjecture, which appears as an intermediate
step in Zagier’s proof (see [Z]):

Theorem 2.1. (Zagier) If m ∈ Z+, s(m) =
[

m+1
2

]

and x1, x2, . . . , xm+1 ∈ C∗ are distinct

complex numbers such that |q| < |xi/xj | < |q|−1 for all 1 ≤ i, j ≤ m + 1, then

(2.1)
∑

λ1>λ2>···>λs(m)>0

λi≡m (mod 2)

q(λ1+···+λs(m))/2

(1 − qλ1)(1 − qλ2) . . . (1 − qλs(m))
× (Alt)m+1





s(m)
∏

i=1

(

xi

xm+2−i

)λi/2




=

(

q1/8
∞
∏

n=1

(1 − q2n)2

(1 − qn)

)2s(m)
∏

1≤i<j≤m+1

F (xj/xi),

where

F (x) := q1/4x−1/2 Θ1(x)

Θ0(x)

and Altm+1 denotes the alternating sum over all permutations of x1, . . . , xm+1.

We derive Theorems 1.1 and 1.2 directly from Theorem 2.1 by first substituting roots of
unity for the xi, and then using combinatorial arguments to relate the complicated alternating
sum to known values.

Proof of Theorems 1.1 and 1.2. Our first task is to simplify the right side of (2.1). Let us
rewrite the functions Θ0 and Θ1 as follows:

Θ0(x) =

∞
∏

n=1

(1 − q2n−1)(1 − q2n−1x)(1 − q2n−1x−1) ·

∞
∏

n=1

(1 − q2n)

(1 − q2n−1)
(2.2)

=

∞
∏

n=1

(1 − q2n−1)(1 − q2n−1x)(1 − q2n−1x−1) ·

∞
∏

n=1

(1 − q2n)2

(1 − qn)
,

Θ1(x) = (1 − x)
∞
∏

n=1

(1 − q2n)(1 − q2nx)(1 − q2nx−1).(2.3)
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Note that for all i < j, the term (xj/xi)
−1/2 is a factor of F (xj/xi). Since we will be substituting

complex values for the xi, the branching of the square root function necessitates a careful
treatment of these terms. For now, move all such terms to the left side of the equation.

We must also check the exponents in Θ1 and Θ0:

(2.4)
∏

1≤i<j≤m+1

Θ1(xj/xi) =

∏

1≤i<j≤m+1

(

(1 − xj/xi)

∞
∏

n=1

(1 − q2n)(1 − q2n(xj/xi))(1 − q2n(xj/xi)
−1)

)

.

Each xi appears with integral exponents, and Θ0(xj/xi) has a similar form. Thus we can make
the substitution xi = ζi−1, 1 ≤ i ≤ m + 1, where ζ is a primitive (m + 1)-st root of unity. The
value of m is fixed throughout this proof, so this notation will cause no confusion. The fraction
(xj/xi) now reduces to ζj−i, and since the set {1, ζ, ζ2, . . . , ζm} contains all (m + 1)-st roots
of unity,

(1 − q2n)(1 − q2nζ) · · · (1 − q2nζm) = (1 − q2n(m+1)).

The product (2.4) contains m + 1 copies of the term
∏∞

n=1(1− q2nζk) for all 1 ≤ k ≤ m. Thus
we have

∏

1≤i<j≤m+1

Θ1(ζ
j−i)

=
∏

1≤i<j≤m+1

(1 − ζj−i)

∞
∏

n=1

(1 − q2n)(m+1)m/2(1 − q2nζ)m+1 · · · (1 − q2nζm)m+1

=

m
∏

k=1

(1 − ζk)m+1−k
∞
∏

n=1

(1 − q2n)(m+1)(m−2)/2(1 − q2n(m+1))m+1.

The same substitution for xi yields

∏

1≤i<j≤m+1

Θ0(ζ
j−i)

=
∞
∏

n=1

(1 − q2n−1)(m+1)(m−2)/2(1 − q(2n−1)(m+1))m+1
∞
∏

n=1

(1 − q2n)(m+1)m

(1 − qn)(m+1)m/2
.

After these simplifications (including the transfer of the fractional powers of xi to the left
side), the right side of (2.1) becomes

q(m2+m+2s(m))/8
m
∏

k=1

(1 − ζk)m+1−k

×
∞
∏

n=1

(1 − qn)(m+1)m/2−2s(m)

(1 − q2n)(m+1)(m+2)/2−4s(m)(1 − q2n−1)(m+1)(m−2)/2

∞
∏

n=1

(1 − q(m+1)2n)2m+2

(1 − q(m+1)n)m+1
.
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If m is odd, then 2s(m) = m + 1, so the above product is equal to

(2.5) q(m+1)2/8
m
∏

k=1

(1 − ζk)m+1−k
∞
∏

n=1

(

(1 − qn)

(1 − q2n)(1 − q2n−1)

)(m+1)(m−2)/2

×

∞
∏

n=1

(1 − q(m+1)2n)2m+2

(1 − q(m+1)n)m+1

= q(m+1)2/8
m
∏

k=1

(1 − ζk)m+1−k
∞
∏

n=1

(1 − q(m+1)2n)2m+2

(1 − q(m+1)n)m+1
,

which is nearly the form seen in the right side of Theorem 1.1. And when m is even, 2s(m) = m,
so the product is equal to

(2.6) q(m2+2m)/8
m
∏

k=1

(1 − ζk)m+1−k
∞
∏

n=1

(1 − qn)

(1 − q2n)2

(

(1 − qn)

(1 − q2n)(1 − q2n−1)

)(m+1)(m−2)/2

×

∞
∏

n=1

(1 − q(m+1)2n)2m+2

(1 − q(m+1)n)m+1

= q(m2+2m)/8
m
∏

k=1

(1 − ζk)m+1−k
∞
∏

n=1

(1 − qn)

(1 − q2n)2
(1 − q(m+1)2n)2m+2

(1 − q(m+1)n)m+1
.

This resembles the right side of Theorem 1.2.
If (2.5) and (2.6) are expanded into an infinite sum, then the first nonzero term with positive

exponent in q has the form cq(m+1)2/8 when m is odd, and cq(m2+2m)/8 when m is even, where

c :=

m
∏

k=1

(1 − ζk)m+1−k.

Now we simplify the left side of (2.1). We must include the product of the transferred radical
terms:

X :=
∏

1≤i<j≤m+1

(xj/xi)
1/2 =

m+1
∏

k=1

(xk)(2k−m−2)/2.

Thus we have the following:
(2.7)

∑

λ1>λ2>···>λs(m)>0

λi≡m (mod 2)

q(λ1+···+λs(m))/2

(1 − qλ1)(1 − qλ2) . . . (1 − qλs(m))
× (Alt)m+1





s(m)
∏

i=1

(

xi

xm+2−i

)λi/2


X.

Before we substitute roots of unity for the xi, we check that all of their exponents are integral.
If m is even, then each λi is even, so λi/2 is integral, and each exponent in X is also integral.
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If m is odd, then each λi is also odd, but so is (2k − m − 2), which is the numerator of the
exponent for xk in X. Since m is odd, every one of the m + 1 variables appears in each term
of the alternating sum, so the total exponent for each xk is an integer. Thus we may set
xi = ζi−1. The value of the alternating sum now depends only on Λ, so we define

(2.8) A(Λ) := (Alt)m+1





s(m)
∏

i=1

(

xi

xm+2−i

)λi/2


 =
∑

σ∈Sm+1

sgn(σ)

s(m)
∏

i=1

(

xσ(i)

xσ(m+2−i)

)λi/2

=
∑

σ∈Sm+1

sgn(σ)

s(m)
∏

i=1

(

ζσ(i)−1

ζσ(m+2−i)−1

)λi/2

.

We also define X̄ to be X evaluated with this same substitution, i.e.

X̄ :=
m+1
∏

k=1

(ζk−1)(2k−m−2)/2.

For all but the simplest cases, the alternating sum is too unwieldy to calculate directly.
Instead we evaluate it by comparing the series expansion of the left and right sides of (2.1).
The exponent of q for an arbitrary term on the left side is half of the sum of the components of
some vector Λ, and hence the term of minimum degree in q corresponds to the unique vector
of minimum sum, namely,

Λ′ = (λ′
1, . . . , λ

′
s(m)) :=

{

(m, m − 2, . . . , 2) when m is even,

(m, m − 2, . . . , 1) when m is odd.

The minimum exponent is (λ′
1 + · · ·+λ′

s(m))/2, which evaluates to 1
2 (m+1

2 )2 = (m+1)2

8 when

m is odd and 1
2
(2(m

2
(m

2
+ 1)/2)) = m2+2m

8
when m is even. These values are precisely the

exponents of least degree on the right hand side of (2.5) and (2.6). The series expansion of the
left side must correspond to that of the right side, so we have the following identity

A(Λ′)X̄ = c =

m
∏

k=1

(1 − ζk)m+1−k.

We will now use (2.8) to show that A(Λ) = −A(Λ) (and is hence zero) for all Λ 6∈ S(m), and
that A(Λ) = ±A(Λ′) for Λ ∈ S(m). Note that we need only consider vectors modulo (2m+2),
for (ζi−1/ζm+1−i) = ζ2i−m−1 is an (m + 1)-st root of unity.

Consider the case where λj ≡ 0 (mod 2m + 2) for some 1 ≤ j ≤ s(m). Then

(ζσ(j)−1/ζσ(m+2−j)−1)λj/2 = 1
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for any permutation σ ∈ Sm+1, so this term can be ignored in the alternating sum. We now
define the transposition τ = (j m + 2− j), and note that στ(i) = σ(i) for all i 6= j, m + 2− j,
but sgn(στ) = − sgn(σ). Thus we can negate (2.8) by inserting τ :

A(Λ) =
∑

σ∈Sm+1

sgn(σ)
∏

1≤i≤s(m), i6=j

(

ζσ(i)−1

ζσ(m+2−i)−1

)λi/2

=
∑

σ∈Sm+1

(−1) sgn(στ)
∏

1≤i≤s(m), i6=j

(

ζστ(i)−1

ζστ(m+2−i)−1

)λi/2

= −
∑

στ∈Sm+1

sgn(στ)
∏

1≤i≤s(m), i6=j

(

ζστ(i)−1

ζστ(m+2−i)−1

)λi/2

= −A(Λ).

The third equality follows since the summation index is over the group Sm+1, and thus the
mapping that sends σ to στ is a bijection. Thus A(Λ) = 0 for vectors of this form.

Now consider the case where λj ≡ λk (mod 2m+2) for some 1 ≤ j, k ≤ s(m). Let τ = (j k).
The j-th and k-th terms can then be combined under their common exponent, and for any σ,

(

ζσ(j)+σ(k)−2

ζσ(m+2−j)+σ(m+2−k)−2

)λj/2

=

(

ζστ(k)+στ(j)−2

ζστ(m+2−j)+στ(m+2−k)−2

)λj/2

.

The denominators are equal because στ(i) = σ(i) for all i 6= j, k. Again we insert τ into (2.8):

A(Λ) =
∑

σ∈Sm+1

sgn(σ)

(

ζσ(j)+σ(k)−2

ζσ(m+2−j)+σ(m+2−k)−2

)λj/2
∏

1≤i≤s(m)
i6=j,k

(

ζσ(i)−1

ζσ(m+2−i)−1

)λi/2

=
∑

σ∈Sm+1

(−1) sgn(στ)

(

ζστ(k)+στ(j)−2

ζστ(m+2−j)+στ(m+2−k)−2

)λj/2
∏

1≤i≤s(m)
i6=j,k

(

ζστ(i)−1

ζστ(m+2−i)−1

)λi/2

= −
∑

στ∈Sm+1

sgn(στ)
∏

1≤i≤s(m)

(

ζστ(i)−1

ζστ(m+2−i)−1

)λi/2

= −A(Λ).

Once again the change in the summation index is valid, and thus A(Λ) = 0 for Λ of this form.

Next, suppose that λj ≡ −λk (mod 2m + 2) for some 1 ≤ j, k ≤ s(m). This case reduces to
the previous one after an easy manipulation. Let τ = (j m + 2 − j), so for any σ,

(

ζσ(j)−1

ζσ(m+2−j)−1

)λj/2

=

(

ζσ(m+2−j)−1

ζσ(j)−1

)−λj/2

=

(

ζστ(j)−1

ζστ(m+2−j)−1

)λk/2

.
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Define a new vector Γ = (γ1, . . . , γs(m)) by γj = −λj and γi = λi for i 6= j, so that γj ≡ γk

(mod 2m + 2). We now show that A(Λ) = −A(Γ), which is zero by the previous case.

A(Λ) =
∑

σ∈Sm+1

sgn(σ)

(

ζσ(j)−1

ζσ(m+2−j)−1

)λj/2
∏

1≤i≤s(m)
i6=j

(

ζσ(i)−1

ζσ(m+2−i)−1

)λi/2

=
∑

σ∈Sm+1

(− sgn(στ))

(

ζστ(j)−1

ζστ(m+2−j)−1

)γj/2
∏

1≤i≤s(m)
i6=j

(

ζστ(i)−1

ζστ(m+2−i)−1

)γi/2

= −
∑

στ∈Sm+1

sgn(στ)

s(m)
∏

i=1

(

ζστ(i)−1

ζστ(m+2−i)−1

)γi/2

= −A(Γ) = 0.

The only remaining vectors are those for which there is at most one λi in each pair of
residue classes, k and 2m + 2 − k modulo (2m + 2). In fact, the following arguments show
that there must be exactly one λi in each such pair. Each λi has the same parity as m, so
there are at most m + 1 possible values modulo (2m + 2). We have also disallowed any pair of
additive inverses modulo (2m + 2), so the number of possible values is halved again, leaving
[

m+1
2

]

= s(m) choices. We already know that the vector Λ′ has s(m) distinct terms, and
because of the symmetry of the alternating sum, the value of A(Λ) does not depend on the
order of the vector components. Therefore, after reordering, the components of Λ must satisfy
λi ≡ ±λ′

i (mod 2m + 2). We also know that 1 ≤ λ′
i < m + 1 for all i, so m + 2 ≤ −λ′

i

(mod 2m + 2) ≤ 2m + 2. Thus if Λ has exactly r terms in the larger half of residue classes
modulo (2m + 2), say m + 2 ≤ λi1 , . . . , λir

≤ 2m + 2, then we define τk = (ik m + 2 − ik) for
1 ≤ k ≤ r and also let τ = τ1 · · · τk. Now we can easily calculate A(Λ):

A(Λ) =
∑

σ∈Sm+1

sgn(σ)

r
∏

k=1

(

ζσ(ik)−1

ζσ(m+2−ik)−1

)λik
/2

∏

1≤i≤s(m)
i6=ik∀k

(

ζσ(i)−1

ζσ(m+2−i)−1

)λi/2

=
∑

σ∈Sm+1

sgn(σ)

r
∏

k=1

(

ζστk(ik)−1

ζστk(m+2−ik)−1

)−λik
/2

∏

1≤i≤s(m)
i6=ik∀k

(

ζσ(i)−1

ζσ(m+2−i)−1

)λi/2

=
∑

σ∈Sm+1

(−1)r sgn(στ)

r
∏

k=1

(

ζστ(ik)−1

ζστ(m+2−ik)−1

)λ′
ik

/2
∏

1≤i≤s(m)
i6=ik∀k

(

ζστ(i)−1

ζστ(m+2−i)−1

)λ′
i/2

= (−1)r
∑

στ∈Sm+1

sgn(στ)

s(m)
∏

i=1

(

ζστ(i)−1

ζστ(m+2−i)−1

)λ′
i/2

= (−1)rA(Λ′).

The third line follows because τk acts only on ik and (m + 2 − ik) for each k, and τ is the
product of these transpositions.
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We have shown that if Λ 6∈ S(m), then A(Λ) = 0, so these vectors are removed from the index
of summation in (2.7). We have also shown that if Λ ∈ S(m), then A(Λ) = ±A(Λ′), with the
sign determined by the parity of the number of vector components satisfying λi > m + 1, and
thus we define the subsets S±(m). Dividing (2.7), (2.5) and (2.6) by c =

∏m
k=1(1 − ζk)m+1−k

gives Theorems 1.1 and 1.2.

Q.E.D.

Remark. It is also possible to make the substitution xi = ζi, 1 ≤ i ≤ m+1 in (2.1) and obtain
identities similar to those in Theorems 1.1 and 1.2. The results are essentially the same, with
only minor adjustments to Definition 1.1.

3. Modular forms and the proof of Corollary 1.7

For a positive integer N , define the subgroup Γ0(N) of SL2(Z) as follows:

(3.1) Γ0(N) :=

{(

a b
c d

)

∈ SL2(Z) : c ≡ 0 (mod N)

}

.

Now suppose that f(z) is a holomorphic function on the upper half of the complex plane
and at the cusps of Γ0(N), and let χ be a Dirichlet character modulo N . We say that f(z) is
a modular form with character of weight k with respect to Γ0(N) if

(3.2) f

(

az + b

cz + d

)

= χ(d)(cz + d)kf(z),

for all z in the upper half of the complex plane and

(

a b
c d

)

∈ Γ0(N). The finite dimensional

space of such modular forms is denoted by Mk(Γ0(N), χ).
If we let q = e2πiz, we may construct a Fourier expansion for such a modular form:

f(z) =
∞
∑

n=0

a(n)qn.

In fact, we may identify any form with its Fourier expansion.
Next, recall Dedekind’s eta-function:

(3.3) η(z) = q1/24
∞
∏

n=1

(1 − qn).

A function f(z) is called an eta-product if it can be expressed as a product of the form

(3.4) f(z) =
∏

δ|N

ηrδ(δz),

where N and each rδ are integers. Such functions have many unique properties. Newman
([N1],[N2]) proves that certain eta-products fulfill the functional equation (3.2) for modular
forms with character:



12 JAYCE GETZ AND KARL MAHLBURG

Theorem 3.1. (Newman) If f(z) =
∏

δ|N ηrδ (δz) is an eta-product for which

(3.5)
∑

δ|N

δrδ ≡ 0 (mod 24)

and

(3.6)
∑

δ|N

N

δ
rδ ≡ 0 (mod 24),

then f(z) satisfies the functional equation (3.2) for all

(

a b
c d

)

∈ Γ0(N), where k = 1
2

∑

δ|N rδ.

Here χ is the character defined by:

χ(d) =

(

(−1)ks

d

)

and s =
∏

δ|N

δrδ .

If an eta-product satisfies the functional equation (3.2), we still must demonstrate holomor-
phicity at the cusps of Γ0(N) to prove it is a modular form. The following observation is well
known (for example, see Ligozat [L]):

Proposition 3.2. Let c, d, and N be positive integers with d|N and (c, d) = 1. With the
notation as above, if the eta-product f(z) satisfies (3.5) and (3.6), then the order of vanishing
of f(z) at the cusp c

d is

(3.7)
1

24

∑

δ|N

N(d, δ)2rδ
(

d, N
d

)

dδ
.

Using Theorem 3.1 and Proposition 3.2 we obtain the following:

Theorem 3.3. If m is even, then

(3.8)
∞
∑

n=0

((P+(n, m) − P−(n, m)) qn/2 ∈ Mm/2(Γ0(2(m + 1)), χ),

where χ(d) =
(

(−1)m/2(m+1)
d

)

.

If m is odd, then

(3.9)
∞
∑

n=0

((P+(n, m) − P−(n, m)) qn ∈ M(m+1)/2(Γ0(4(m + 1)), χ),
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where χ(d) =
(

(−1)(m+1)/2(m+1)
d

)

.

Remark. Note that Corollary 1.6 implies that (3.8) is a power series in integer powers of q.

Proof of Theorem 3.3. We give the proof in the case that m is even; the proof for odd m is
entirely similar. By Theorem 1.2, for even m,

(3.10)
∞
∑

n=0

(P+(n, m) − P−(n, m)) qn/2 = q(m2+2m)/8
∞
∏

n=1

(1 − qn)

(1 − q2n)2
(1 − q2(m+1)n)2m+2

(1 − q(m+1)n)m+1

=
q1/24

q4/24

q4(m+1)2/24

q(m+1)2/24

∞
∏

n=1

(1 − qn)

(1 − q2n)2
(1 − q2(m+1)n)2m+2

(1 − q(m+1)n)m+1

=
η(z)

η2(2z)

η2m+2(2(m + 1)z)

ηm+1((m + 1)z)
:= f(z).

If we let N = 2(m + 1), then we may write f(z) =
∏

δ|N ηrδ(δz) as in Theorem 3.1 and

Proposition 3.2. We have

∑

δ|N

δrδ = 1(1) − 2(2) + 4(m + 1)2 − (m + 1)2 = −3 + 3(m + 1)2

and

∑

δ|N

N

δ
rδ = 2(m + 1)

(

1

1
−

2

2
+

2(m + 1)

2(m + 1)
−

(m + 1)

(m + 1)

)

= 0 ≡ 0 (mod 24).

So f(z) satisfies (3.5) and (3.6). Therefore, by Theorem 3.1, f(z) satisfies (3.2) with

(

a b
c d

)

∈

Γ0(2(m + 1)), k = m
2

, and χ(d) =
(

(−1)m/2(m+1)
d

)

.

Now we must check the holomorphicity of f(z) at the cusps of Γ0(2(m+1)). By Proposition
3.2, it suffices to show that the following is non-negative:

(d, 1)2(1)

1
−

(d, 2)2(2)

2
+

(d, 2(m + 1))2(2(m + 1))

2(m + 1)
−

(d, (m + 1))2((m + 1))

(m + 1)
.

If 2 6 |d, then
(d, 1)2 − (d, 2)2 + (d, 2(m + 1))2 − (d, (m + 1))2 = 0.

If 2|d, then

(d, 1)2 − (d, 2)2 + (d, 2(m + 1))2 − (d, (m + 1))2 = 1 − 4 + 4(d, (m + 1))2 − (d, (m + 1))2 ≥ 0.

Q.E.D.
To prove Corollary 1.7, we recall a theorem of Serre [S].
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Theorem 3.4. (Serre) Let f(z) be a holomorphic modular form of positive integer weight k
with character χ on Γ0(N) with Fourier expansion

(3.11) f(z) =

∞
∑

n=0

a(n)qn

where a(n) are algebraic integers in some number field and N is a positive integer. If M is a

positive integer, then there exists a positive constant α such that there are O
(

x
logαx

)

integers

n ≤ x where the a(n) are not divisible by M .

Proof of Corollary 1.7. By Theorem 3.3, for every positive integer k the generating function
∞
∑

n=0

(P+(n, k) − P−(n, k)) qn

is a holomorphic integer weight modular form. Therefore, Theorem 3.4 immediately implies
Corollary 1.7.

Q.E.D.
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