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Abstract. The past several years have seen an explosion of interest in the

cryptographic applications of non-commutative groups. Braid groups in par-

ticular are especially desirable, as they provide difficult computational prob-
lems and can be implemented quite efficiently. Several different groups of

researchers have proposed numerous cryptographic protocols that make use of

braid groups, but unfortunately, flaws have been found in nearly every one.
This expository paper discusses the specifications, attacks, and responses of

both the Anshel, Anshel, and Goldfeld Commutator [2, 1] and the Cho et al.

Diffie-Hellman Conjugacy [10] key exchange protocols.

1. Introduction

The goal of public-key cryptography is to communicate securely over public
channels, so that a malicious interloper cannot obtain any secret data even if he
is able to read the transmitted messages. Most of the methods currently in use
are based on arithmetic over finite fields, be they systems that rely on modular
arithmetic like RSA, or systems that use the group action of elliptic curves like
Certicom. The potential advent of quantum computers is very troubling, because
all of these cryptosystems are easily broken by such machines. The expository
paper by Koblitz and Menezes contains a broader review of the current state of
affairs [23].

Many people have investigated non-commutative algebraic structures in hopes
of finding a new alternative, and for a time, braid groups seemed to hold a great
deal of promise [2, 10, 14]. After closer investigation it has been discovered that
braid groups have perhaps too much structure, and many of the same techniques
for efficient computations can be used to attack braid-based protocols [8, 17, 21,
22, 25]. The Conjugacy problem in braid groups forms the basis for many proposed
cryptosystems, and recent results have shown that the problem is more feasible
than many people had expected [6, 7, 19].

The body of the paper begins with an introduction to braid groups in Section 2,
followed by the description of two prominent protocols that utilize them in Section
3. Some of the known weaknesses, attacks and modifications for these protocols
appear in Section 4.

I would like to acknowledge a brief but beneficial discussion with Andrew Bolstad,
who researched implementation aspects of braid group cryptography [8] for a similar
report. It should also be recorded that Helger Lipmaa maintains an excellent online
clearinghouse of progress in braid group cryptography at http://www.tcs.hut.fi/ hel-
ger/crypto/link/public/braid/.
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2. Braid Groups

The braid groups are (highly) non-commutative torsion-free groups that were
first introduced by Artin [3]. They are of cryptographic interest because compu-
tations and data storage can be performed quite efficiently, but they are complex
enough that at first glance it seems unlikely that they have any unexpected underly-
ing structure. In this section, they are first defined geometrically in terms of braids,
and then the following subsections give algebraic group presentations and describe
certain canonical forms that are used in algorithms. The author regrets that he is
not more skilled at producing graphics in LATEX, as the visual representation is a
powerful tool in analyzing and understanding braid groups. The beginning reader
is strongly encouraged to sketch all of the braid relations throughout this paper,
and the graphical interpretation will often be explained for complicated algebraic
expressions involving braids.

The name “braid group” is completely natural, as the n-th braid group Bn is
defined as a set of “n-braids.” Consider a set b of n non-intersecting bands that
start at the points (x, y, z) = (0, i, 0) for 1 ≤ i ≤ n, and end at the corresponding
points (1, λb(i), 0). The set of equivalence classes under isotopy of all such bands is
then precisely the set of n-braids, and it is clear that each class is uniquely given
by the ordered set of crossings between bands. Here a crossing is defined to be
an intersection between two bands in the projection of a braid to the (x, y) plane
(when drawing braids, the top and bottom bands in a crossing are distinguished),
and any braid implicitly has finitely many crossings (the trivial braid has zero
crossings). The group operation is defined simply by connecting the endpoints and
concatenating two braids, and the inverse of a braid is constructed by reversing
each crossing sequentially. The well-developed theories of knots and links provide
powerful tools for using the complement of a braid in ambient space to describe the
possible configurations, and it is the author’s understanding that this plays a role
in certain classifications of braids [26].

2.1. Artin presentation. In the above description, it is clear that crossings be-
tween adjacent bands are the fundamental units in constructing braids. The Artin
presentation gives Bn in terms of the generators {σi}1≤i≤n−1, where σi is a braid
with exactly one crossing: band i+ 1 passes over band i. The relation between σi
and
σ−1i leads to the designation of a crossing as positive if i+ 1 crosses above i, and

otherwise it is negative.

Definition 2.1. The (n+ 1)-th braid group is given by the presentation
(2.1)
Bn+1 :=< σ1, . . . , σn | σiσi+1 = σi+1σi, σi+1σiσi+1 = σiσi+1σi, 1 ≤ i ≤ n− 1 > .

Remark. This definition falls into the more general framework of Artin and Coxeter
Groups (see [5]), which have generators {ai}i∈I and relations of the form

(2.2) < aiaj >
mij=< ajai >

mji ,

where the notation < b1b2 . . . bk >
n represents the n-term truncation of the infi-

nite periodic word b1b2 . . . bk. For a given Artin group G, the associated Coxeter
group is obtained by adding the relation a2i = 1 for all i. Those who are famil-
iar with presentations of symmetric groups will recognize that the Coxeter group
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of Bn is precisely the Coxeter presentation of the symmetric group Sn. Another
generalization of braid groups is the Garside groups [18].

The preceding remark implies that there is a surjective homomorphism φ that
sends a braid b ∈ Bn to a permutation φ(b) = π ∈ Sn defined by π(i) := λb(i).
This permutation records only the ending position of each band, and ignores the
sign of the crossings. In other words, the crossings σi and σ−1i both map to the
same transposition (i, i+ 1). A braid is said to be pure if φ(b) is trivial.

It is helpful to have a canonical inverse for φ that defines the set S̃n := φ−1(Sn)
of permutation braids. The permutation braids are also referred to as simple braids.
Any permutation π decomposes into adjacent transpositions as π = (t1, t1 +
1) · · · (tk, tk + 1), so φ−1(π) := σt1 · · ·σtk . An equivalent description is to con-
struct the simplest possible braid that maps band i to π(i) for all i, with every
crossing positive. The map φ−1 is henceforth denoted by a tilde, as φ−1(π) = π̃.

The permutation braids are a special subset of the set of positive braids B+
n ,

which is the monoid formed by restricting to words in σ+1
i under the same relations

(2.1) as the original braid group. Garside proved the key property that two positive
braids a and b are equivalent in Bn if and only if they are equivalent in B+

n . This
implies that the order relation

a ≤ b⇔ b = ac, a, b, c ∈ B+
n

forms a lattice from the positive braids [18] (Garside is also responsible for much
of the following development).

One permutation braid is particularly useful in decomposing general braids into
simple factors.

Definition 2.2. The fundamental braid in Bn is ∆n := π̃n, where ππn
(i) = n+1−i.

Geometrically, ∆n is the braid in which all n bands are rotated through a half-turn,
with the relative order among the bands preserved. Every pair of bands meets in a
single crossing, and thus ∆n is a word of length n(n− 1)/2 in the Artin generators.

The fundamental braid has a number of remarkable properties.

Proposition 2.3. Suppose that 1 ≤ i ≤ n− 1.

(1) There are equivalent formulae for the fundamental braid:

∆n =(σi)(σi+1σi) · · · (σn−1 · · ·σi)(σi−1σi · · ·σn−1) · · · (σ1 · · ·σn−1)(2.3)

=(σ1 · · ·σn−1) · · · (σ1 · · ·σi+1)(σi · · ·σ1) · · · (σiσi−1)(σi).

(2) Commutation is described by ∆nσi = φn(σi)∆n, where φn(σi) := σn−i.
(3) If n ≥ 3, then the center of Bn is < ∆2

n >.
(4) Every permutation braid π̃ is a left factor of ∆n in B+

n , so that ∆n = π̃c
for some simple c ∈ B+

n .

The explicit formulae and the commutation relation are readily apparent from
the geometric perspective, even though they are cumbersome in the algebraic group
presentation. For example, ∆nσi is a braid in which all of the bands are rotated a
half-turn, followed by band i + 1 crossing over band i. If the half-turn is undone
before the crossing, then the crossing moves to n−i+1 over n−i, with the half-turn
following, which is just the braid σn−i∆n. But this same fact requires several lines
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to prove algebraically,

σi∆n = σi(σn−1)(σn−2σn−1) · · · (σ1 · · ·σn−1)(2.4)

= (σn−1) · · ·σi(σi+1 · · ·σn−1)(σi · · ·σn−1) · · · (σ1 · · ·σn−1)

= (σn−1) · · · (σi · · ·σn−1)σn−1(σi−1 · · ·σn−1) · · · (σ1 · · ·σn−1)

= ∆nσn−i,

where the last line follows from inductively applying the fact that

(2.5) σn−k(σi−k · · ·σn−1) = (σi−k · · ·σn−1)σn−k−1.

The properties of the fundamental braid allow for the construction of a canonical
decomposition of an arbitrary braid into a sequence of simple braids.

Definition 2.4. A sequence A1 · · ·Ap of simple braids Ai ∈ S̃n is normal if for
every adjacent pair, Ai is the maximal simple braid that appears on the left of any
equivalent form of AiAi+1.

Note that this definition can also be stated in terms of the lattice ordering. Again,
the condition seems rather technical symbolically, but geometrically is easy to un-
derstand. A simple braid is one in which each pair of bands crosses at most once,
and every crossing is positive. Thus every braid starts with a unique, maximal
simple braid that is obtained by pushing to the left as many crossings as possible
without introducing a second twist between any two bands.

Proposition 2.3 implies that for any i, a negative crossing can be written as

(2.6) σ−1i = ∆−1n A

for some simple word A. Therefore all of the negative crossings in an arbitrary
word can be converted to negative powers of ∆n, which are then easily pushed to
the left by the commutation relation. The representation of a braid in the following
theorem is referred to as the normal (left-weighted) form of a braid [16].

Theorem 2.5. Any b ∈ Bn is equivalent to a unique word of the form

b = ∆u
nA1A2 · · ·Ap,

where u is an integer, and A1 · · ·Ap is a normal sequence.

The index p in the normal form of a braid b is known as the length of the braid,
which is an important invariant for cryptological purposes. Note that a braid may
be encoded as a data set containing an integer and a finite number of permutations.
The normal form is very useful for computations, as there are polynomial-time
algorithms for converting an arbitrary word into normal form, and in fact, for a
generic sequence of simple words, many of the factors will remain unchanged!

2.2. Band generator presentation. Although the rest of this paper will focus
mainly on the Artin presentation, a new efficient implementation of the braid group
uses the band generators, which serve as a sort of dual to the Artin generators
[6, 7, 13]. For every pair s > r, the element asr represents a braid in which band
s and r are swapped, with band s crossing on top, and band r crossing over every
other band apart from s. Thus

(2.7) asr = σs−1 · · ·σr+1σrσ
−1
r+1 · · ·σ

−1
s−1
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and ai+1,i = σi, so that the Artin and band generators clearly generate the same
group. The presentation is

(2.8) Bn :=< asr | atsarq = arqats, atsasr = atrats = asratr >,

where the relations are defined only for the non-trivial cases, when the values of
distinct subscripts q, r, s, and t are all different and satisfy the proper inequalities.

Just as braids written with the Artin generators reduce to the nice canonical
form of Theorem 2.5, the band generators also allow a decomposition for general
braids. The fundamental word is now given by

(2.9) δn := an,n−1 · · · a32a21,

and the simple braids are similarly defined to be the set of left factors over all
positive decompositions of δn. The combinatorics of such words can be described,
and turn out to be indexed by the Catalan numbers for nested parentheses. Note
that the center is generated by δnn = ∆2

n, as it can be seen that every strand makes
one complete rotation.

The fundamental word δn also satisfies many properties analogous to Proposi-
tion 2.3 for ∆n, and a normal sequence is still defined to be a sequence of simple
braids that are maximally weighted to the left. The theorem is the analogous
decomposition result.

Theorem 2.6. Any b ∈ Bn is equivalent to a unique word of the form

b = δunA1A2 · · ·Ap,

where u is an integer, and A1 · · ·Ap is a normal sequence in the band generators.

Now the benefit of the band generators is apparent, as the n-th Catalan number is
far smaller than the number of permutations in Sn, and thus there are fewer different
simple words that may appear in the normal form. The band-generator form has
been used for greater efficiency in some practical implementations of braid groups
[8]. In particular, the smaller number of potential factors allows the Conjugacy
problem to be solved much more quickly in this form, although it is still exponential.
See section 2.4 for more discussion.

2.3. Representations of the Braid Group. The reducible Burau representation
ρ : Bn → GL(n−1,Z[t, t−1]) was discovered shortly after the definition of the braid
groups, and is can be naturally described topologically. For the present context, an
algebraic description is more helpful, and it is given in terms of the Artin generators
by

(2.10) ρ(σi)(t) :=



(
−t 1

0 1

)
⊕ In−3 if i = 1,

Ii−2 ⊕

 1 0 0

t −t 1

0 1 0

⊕ In−i−2 if 1 < i < n− 1,

In−3 ⊕

(
1 0

t −t

)
.

These matrices satisfy the braid relations (2.1), and the image is the set of Burau
matrices.
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For many years it was believed that this representation might be faithful, but it
was recently showed by Moody, Long and others that it is unfaithful for n ≥ 5 (see
[4, 24]). This is still a useful representation, as the kernel (and thus the probability
of collisions) is quite small, the matrices are sparse, and their size does not grow
very quickly relative to n. These properties have been used in several proposed
cryptosystems and also in some attacks.

A generalized version of the Burau representation is used for cryptography in [1],
where each band in a braid is associated with a distinct color that is encoded by ti.
The crossing σi is mapped to ρ(σi)(ti), and for a product of braids, a permutation
is required to uniquely track the relative positions and colors of the crossings.

Definition 2.7. The colored Burau group CBn is the set

Sn ×GL(n− 1,Z[t1, t
−1
1 , . . . , tn, t

−1
n ]

together with the multiplication

(2.11) (π1,M1)(π2,M2) := (π1π2, (π
−1
2 (M1))M2),

where a permutation π acts on each element of a matrix M by mapping ti 7→ tπ(i).

The colored Burau representation ρ : Bn → CBn is then given by

(2.12) ρ(σi) = ((i, i+ 1), ρ(σi)(ti)).

This representation also preserves the braid relations, and is again a homomorphism
with a small kernel.

The other important representation of the braid groups is due to Lawrence and
Krammer. Two of the more celebrated results in algebra of recent years are the
independent proofs by Bigelow [4] and Krammer [24] that this representation

(2.13) K : Bn → GL(n(n− 1)/2,Z[q, t, q−1, t−1]

is faithful. If the basis elements for the module over Z[q, t, q−1, t−1] are denoted by
xij for 1 ≤ i < j ≤ n, then the action of the matrix linear transformation K(σi) is

K(σi) : xij 7→



tq2xk,k+1 ifi = k, j = k + 1,

(1− q)xi,k + qxi,k+1 ifj = k, i < k,

xik + tqk−i+1(q − 1)xk,k+1 ifj = k + 1, i < k,

tq(q − 1)xk,k+1 + qxk+1,j ifi = k, k + 1 < j,

xkj + (1− q)xk+1,j ifi = k + 1, k + 1 < j,

xij ifi < j < k or k + 1 < i < j,

xij + tqk−i(q − 1)2xk,k+1 ifi < k, k + 1 < j.

(2.14)

Such a matrix with respect to the basis xij is called the Krammer matrix of a braid.
Many useful bounds for the powers of t and the size of the coefficients appear in [9],
and are derived from basic facts about the representation proven in [24]. See section
4.3 for an explanation of why the most effective attacks on the Diffie-Hellman braid
cryptosystem use this representation.



AN OVERVIEW OF BRAID GROUP CRYPTOGRAPHY 7

2.4. The Word Problem and the Conjugacy Problem. The word problem in
braid groups asks whether two given words in σi (or any other set of generators)
are equivalent as braids. This problem is easily solved, and the normal forms of
sections 2.1 and 2.2 was developed to allow for the easy comparison of two arbitrary
words. Each word can be converted to normal form in polynomial time, and then
the uniqueness of the decomposition provides the test.

The Conjugacy problem is to find an element c such that x = cx′c−1 when
given two elements x, x′ that are known to be conjugate. This problem is unsettled
for braid groups, but there has been great progress in recent years in extending
Garside’s summit set method [18], and experimental data suggests that the problem
is feasible. As of yet, there are still no provably efficient algorithms. This topic
returns later in section 4.2.

3. Braid Group Cryptosystems

This section gives the basic definitions for two of the most prominent braid-based
cryptosystems. Both systems were designed to take advantage of the difficulty of
the Conjugacy problem, but the subtle differences between the protocols and the
idealized problem make huge differences in the security, as the attacks of Section
4 demonstrate. The braid group Conjugacy problem itself may also be severely
threatened by some recent methods.

3.1. Commutator Protocols. This key agreement protocol was proposed by An-
shel, Anshel and Goldfeld in [2], and then later extended to make use of a certain
key extractor in the final step [1]. In this system, an integer N is fixed, and any
two parties A,B who reside in the network each have a public subgroup in Bn,

S =< s1, s2, . . . , sm >,(3.1)

T =< t1, t2, . . . , tn >,

where si, tj are arbitrary elements. To establish a shared secret, A first chooses a
secret a = si1 · · · sik ∈ S, and B chooses a secret b = tj1 · · · tj` ∈ T . Then A and B
send the sets of pairs

{(t1, at1a−1), . . . , (tn, atna
−1)},(3.2)

{(s1, bs1b−1), . . . , (sn, bsnb
−1)},

respectively. Now A can compute

(3.3) (bsi1b
−1) · · · (bsikb−1)a−1 = (bab−1)a−1,

and B can compute the commutator bab−1a−1 similarly. This shared secret is now
used to generate a key.

The key extractor introduced in the second paper [1] makes use of the colored
Burau representation (a slight modification of the original) by mapping a braid b
to a pair (M,π), where M is the image of B in the Burau representation, and π
is the image of b under the map φ : Bn → Sn. The shared secret commutator is
calculated as above, and then mapped as described. The key is finally obtained by
reducing the matrix M modulo some prime p, and plugging in the result to a key
hash function.

Note that the original version of this protocol is secure in any setting where
the apparent “multiple conjugacy search problem” is difficult, which regrettably
does not include the braid groups! The second version was developed because of
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a specific weakness in the first due to the structure of the braid groups, but the
second cannot be as easily adapted to a general setting.

3.2. Diffie-Hellman Conjugacy Protocols. In their original paper on public-
key cryptography [15], Diffie and Hellman proposed the now famous key exchange
protocol that is based on the difficulty of the discrete log problem in finite fields.
If g is some element of large order, then two parties A and B pick secret values a
and b respectively, and transmit ga and gb publicly. Then both compute the shared
value gab, which is protected from eavesdroppers as long as the “Diffie-Hellman
problem” (which is often expected to be equivalent to the Discrete Log problem) is
difficult.

Cheon and others in Ko’s research group [10] had the insight that a similar pro-
cedure can be used in braid groups by taking conjugates from disjoint, commutative
subgroups. For the braid group B2n, consider the subgroups of lower and upper
braids

LB2n :=< σ1, . . . , σn−1 >,(3.4)

UB2n :=< σn+1, . . . , σ2n−1 > .

It is clear from (2.1) that LB2n
∼= UB2n

∼= Bn, and that the two subgroups commute
with each other. A relatively complicated public braid x ∈ B2n is made available
prior to running this protocol. Then A chooses a secret braid a ∈ LB2n, and sends
ya = axa−1 to B. Similarly, B sends yb = bxb−1 to A. Now both A and B compute

(3.5) ayba
−1 = abxb−1a−1 = baxa−1b−1 = byab

−1.

Many other protocols that are related to the original Diffie-Hellman procedure can
also be recast in this manner; for example, the ElGamal signature scheme in braid
groups has been considered [10].

4. Attacks on Braid Cryptosystems

The braid cryptosystems of the previous section ignited a great deal of research
and excitement in the subject, and it quickly became apparent that they were
insecure. Many attempts to modify them have also failed, and it is unclear if any
braid-based systems can be safely used. This section describes the vulnerabilities of
the Commutator and Diffie-Hellman protocols, and also discusses the best known
attacks on the general Conjugacy problem for braid groups.

Originally it was believed that the Conjugacy problem was difficult enough in
the braid groups that secure cryptosystems could be constructed. Later it was dis-
covered that refinements to the summit set method greatly weaken the Conjugacy
problem. However, even without this development there were other problems, as
the given protocols rely on variant problems that are related but not necessarily
equivalent to the Conjugacy problem. The Diffie-Hellman braid protocol can be
attacked by using the Lawrence-Krammer representation, even though the generic
Conjugacy problem cannot be in this manner. And the Commutator protocol is
vulnerable to length attacks, which again are not effective on the general Conjugacy
problem.
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4.1. Length attacks on the Commutator protocol. The Commutator protocol
releases multiple instances of pairs (x, axa−1) for a secret value a that is taken from
a set with a finite number of known generators. This set of data can be exploited
in a simple way to determine a, as first observed in [22]. The following attack is
not as effective for the general Conjugacy problem, as the set of generators of Bn
are a much more varied set.

Recall from Theorem 2.5 and the ensuing discussion that the length function is
a well-defined property of braids.

Definition 4.1. The distance between two braids b, c is defined by

d(b, c) := length(bc−1).

This gives a nice metric on braids that satisfies the important triangle inequality

(4.1) d(b, e) + d(c, e) ≥ d(b, c).

Observe that the generators of the set s in the Commutator protocol should be
relatively tangled, which means that none of them should share very many factors
or combine to form simpler words. One then expects that unless s−1j is an initial

factor of a, then the length of sj(atia
−1)s−1j is larger than the length of atia

−1 with
non-zero probability, as

(4.2) length(sj(atia
−1)s−1j ) ≤ 2 · length(sj) + length(atia

−1).

In response to this attack, the Commutator protocol was amended to use gen-
erators of small length, and to use the associated matrices from the colored Burau
representation instead of just braids [1]. Then the protocol is run as before, with
secret values a, b leading to a shared secret bab−1a−1. This braid is then converted
to its colored Burau matrix and permutation pair ρ(bab−1a−1), which is then run
through a key extractor E. The key extractor sends a braid b to

(4.3) E(b) := (πb,Mb(τ1, . . . , τn) / Fp),

where τi ∈ F∗p are fixed. substitutes values in a finite field Fp for the color variables
ti, yielding a large, finite keyspace. The purpose of this procedure is to mask the
commutator through a sort of hash function so that the generators can have small
length without being easily observed in the final key. See section 4.3 for more about
the security of this protocol.

4.2. The summit set and the Conjugacy Problem. The basis for all of the
present algorithms for the Conjugacy problem is in Garside’s initial work [18], where
he associated a finite set of conjugates with every braid b. This set is known as the
summit set, which was then improved (made smaller) to the super summit set [16],
and finally the ultra summit set [19]. This latter is just the union of the cyclic parts
of the orbits in the super summit set, which is smaller still. The super summit
set SSS(b) is defined to be the set of all braids c = aba−1 for every a such that
length(c) minimal. The key property is that this set is computable, which solves
the Conjugacy problem, as

SSS(b) = SSS(c) ⇐⇒ c = aba−1.

To compute the super summit set, use the following easily computable conju-
gates.
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Definition 4.2. If b = ∆u
nA1 · · ·Ap ∈ Bn is in normal form, then the cycle and

decycle of b are

∂+(b) := ∆u
nA2 · · ·Apφun(A1), ∂−(b) := ∆u

nφ
u
n(Ap)A1 · · ·Ap−1,

respectively, where φn(σi) = σn−i for all i.

Remark. The cycle and decycle of b are both conjugate to b, as ∂+(b) = sbs−1 for
s = ∆u

nA2 · · ·An.

.
The algorithm of [16] relies on some simple results about the effects of repeated

cycling and taking conjugates of simple words.

Proposition 4.3. Suppose that b ∈ Bn.
(1) If b 6∈ SSS(b), then cycling or decycling at most n(n− 1)/2 times yields a

braid of smaller length.
(2) If b ∈ SSS(b), then

SSS(b) ⊂ {π̃bπ̃−1 | π ∈ Sn}.

Hence checking for the conjugacy of two braids b, b′ is achieved by finding the
set SSS(b) and testing the membership of b′. Gebhardt showed [19] that the ultra
summit set USS(b) is sufficient for the same test, and is typically much smaller
than SSS(b) in practice, although it is not provably so. Whatever security remains
in the Conjugacy problem is due to the fact that the size of the summit sets may be
exponential in general, and it is difficult to obtain good bounds on the cardinality.

A related approach to the Conjugacy problem utilizes ideas from the length
attack from section 4.1 (see [25] for example). Given two conjugates braids b and b′,
one computes a braid cb′c−1 of minimal length, and tests whether this is equal to b,
or in a slight improvement, whether the new braid differs from b by conjugation with
a simple braid. Again, the length function lends itself to quite powerful methods
for finding conjugates.

4.3. Linear representations. The linear representations of the braid groups il-
lustrate the divide between the general Conjugacy problem and the problems that
actually arise in protocol security. The previous section contains some of the best
attacks for the Conjugacy problem, and while they have become increasingly ef-
fective, there is still some remaining security. There are potential uses of linear
representations of braid groups to construct algorithms for this problem [11, 9, 13],
but a difficulty arises in that the matrix found may not be easily invertible to a
braid. This is in sharp contrast with the problems underlying the Commutator and
Diffie-Hellman Conjugacy protocols, which are highly vulnerable to such attacks.

In section 4.1 the revised Commutator protocol was defined, which uses the
colored Burau representation to transform braids into matrices. However, the added
structure of the Burau matrices allows an attacker to solve a straightforward linear
system of equations over a finite field to obtain the key [25]. The authors of the
protocol were aware of this possibility, but did not realize that the special form of
the matrices would make such an attack feasible. This linear algebraic attack is
especially effective for the recommended short generators (which are necessary to
avoid the length attack!), and to the author’s knowledge there have not been any
additional updated versions of the Commutator protocol.
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Recall the Diffie-Hellman Conjugacy protocol from section 3.2. The secret, com-
muting values a, b are combined with a public braid x to compute a shared secret
abxb−1a−1. The protocol is compromised if one can find the secret value from
ya = axa−1 and yb = bxb−1. Cheon and Jun [9] solve this problem by using the
Lawrence-Krammer representation K of Bn.

Let Ya = K(ya), Yb = K(yb) be the images in the representation. Working
modulo some prime p and certain irreducible polynomials in t and q, solve for the
matrix A in the equations

YaA = AYb(4.4)

K(σi)A = AK(σi) for σi ∈ UB2n.

The key insight in this attack is that even though the solution to the linear equations
may not be K(a), the commutativity conditions in (4.4) allow it to serve the same
purpose, as

(4.5) AYbA
−1 = K(b)YaK(b)−1 = K(abxb−1a−1),

which can be lifted to the desired braid. This attack is effective because the matrices
that arise in the representation satisfy very restrictive bounds.

4.4. Randomness and other concerns. Dehornoy observed [13] that great care
must be taken in choosing random braids, for otherwise the normal form of a
product ab may yield too much information about the individual factors a and b.
A particular problem lies in picking a random sequence of simple words; then it
is very possible that many of the factors are already left-weighted. Some possible
solutions are to use randomizing techniques to change the presentation of a word
into an equivalent form, or to insert small permutations into the middle of the word,
which can greatly alter the braid. There are also other ways to rewrite braids into
different forms [12].

There is also a general worry that seemingly contradictory security requirements
arise from different attacks. For example, the length attack implies that the gener-
ators in the Commutator protocol should have small length [22, 1], but that makes
the Conjugacy problem easier. As explained above, the Conjugacy problem can
be too easy if random sequences of simple words are chosen, but it is difficult to
guarantee a large length otherwise. The fact that no one has found a good balance
between the different attacks should give one pause before relying on braid group
cryptography.

5. Conclusion

The braid groups have seen heavy interest in recent years, and many have raised
them as a new hope for future cryptography. There are good algorithms for storing
elements and performing group operations, and the groups are aesthetically very
appealing. The cryptosystems that have been proposed thus far have relied on the
difficulty of the conjugacy problem, but the use of the super (ultra) summit sets has
greatly reduced the security of these systems. Even worse, the Lawrence-Krammer
representation solves the Diffie-Hellman Braid Problem in polynomial time, and the
normal form techniques that were developed by Garside to solve the word problem
have also found use in attacking the Commutator protocol.

One alternative is to use a root-finding problem instead of conjugacy. If b =
ce ∈ Bn, then it is known that c is a unique root [20], and it seems to be a difficult
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problem to find this root. However, it is not yet known how to design a protocol
that isolates this problem, and the example of [14] combines a Square-root problem
with the Conjugacy problem.

After the initial optimism, there are still not any trusted protocols involving
braid groups, and many simulations that have been run suggest that the Conjugacy
problem is simply not difficult enough. Regardless, even if the braid groups are
ultimately abandoned for cryptographic purposes, their study has lead to a great
deal of progress on decision problems and protocols involving more general Artin
groups, and perhaps even other non-commutative groups may find their place in
cryptography.
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