18.781 Exam 2 Practice Problems - Fall 2008

These problems are a sample of the material that may appear on Exam 2, and are meant as extra practice.

- 1. If $p \ge 3$ is prime, how many solutions are there to $x^a \equiv 1 \pmod{p}$ as a function of a?
- 2. Determine how many solutions each of the following equations has, and find them if there are any.
 - (a) $x^{11} \equiv 22 \pmod{23}$ (c) $x^{13} \equiv 13 \pmod{29}$

(b)
$$x^6 \equiv 9 \pmod{17}$$
 (d) $x^{21} \equiv 15 \pmod{29}$

- 3. Find a primitive root modulo 13^2 .
- 4. Use the binomial theorem to show that $\sum_{k=0}^{n} \binom{n}{k} 2^{n} = 3^{n}$.
- 5. How many solutions are there to $2x^3 x^2 1 \equiv 0 \pmod{125}$?
- 6. How many solutions are there to $(x^2 3)(y^2 2) \equiv 0 \pmod{p}$ as a function of p?
- 7. If $n = p_1^{a_1} \cdots p_r^{a_r}$, how many quadratic residues modulo *n* are there?
- 8. Find all of the quadratic residues modulo 31 and 35.
- 9. (a) Determine whether 2x² 3x + 7 ≡ 0 (mod 131) is solvable.
 (b) Determine whether x² ≡ 46 (mod 91) is solvable (note that 91 is not prime).

10. Characterize all primes
$$p$$
 such that $\left(\frac{18}{p}\right) = 1$.

11. Evaluate the Legendre/Jacobi symbols:

(a)
$$\left(\frac{31}{103}\right)$$

(b) $\left(\frac{21}{73}\right)$
(c) $\left(\frac{-15}{69}\right)$
(d) $\left(\frac{18}{100}\right)$
(e) $\left(\frac{200}{97}\right)$.

12. For any odd integer n, evaluate $\left(\frac{(n-1)(n+1)}{n}\right)$.

- 13. Use quadratic reciprocity to characterize the primes for which $x^2 3y^2 \equiv 0 \pmod{p}$ is definitely not solvable.
- 14. Find infinitely many solutions to $x^2 7y^2 = 1$.
- 15. Expand the following fractions into simple continued fractions:

(a)
$$\frac{25}{7}$$

(b) $\frac{7}{25}$ (c) $\frac{48}{17}$.

16. Prove that if x = [a₀, a₁, ..., a_r] is greater than 1, then ¹/_x = [0, a₀, a₁, ..., a_r].
17. Convert the continued fractions into rational numbers:

- (a) [-2,5,1,3](b) [4,3,2,1](c) [1,2,3,4].
- 18. Calculate [3, 6, 3, 1, 2] by recursively finding all of its convergents.
- 19. (a) Evaluate [2, 3, 2, 3, 2, 3, ...]
 (b) Evaluate [3, 2, 3, 2, 3, 2, ...].