18.781 Final Exam Practice Problems - Fall 2008

(excluding material from Exam 2)

These problems are a representative sample of the questions that may appear on the Final Exam, and are meant as extra practice. Note that this is a cumulative exam, and will include material from throughout the semester.

- 1. (a) Calculate the greatest common divisor of 588 and 1356.
 - (b) Find all integers x and y such that 588x + 1356y = 36.
- 2. Calculate the least common multiples of the following sets of integers:
 - (a) 13 and 24,
 - (b) 108 and 222,
 - (c) 34 and 52,
 - (d) n, n+1, and n+2, where $n \equiv 1 \pmod{4}$.
- (a) Suppose that (a, n) = 1 and d | n. Is it then true (a + kd, n) = 1 for any k? If not, can you characterize the k for which it is true?
 - (b) Given that $972 = 6 \cdot 162$, evaluate (163, 972).
- 4. One euro is currently worth approximately \$1.30. Suppose that a traveler returns with his pockets full of euro coins only to discover that the exchange office only has \$20 bills. What is the minimum number of euros that can be exchanged exactly for bills (with no wasted change leftover)?
- 5. Use the binomial theorem to prove that if p is prime and $a^p \equiv a \pmod{p}$, then $(a+1)^p \equiv a+1 \pmod{p}$. (This actually leads to an inductive proof of Fermat's Little Theorem!)
- 6. (a) Prove that if a prime p | (n² n + 1) for some integer n, then p ≡ 1 (mod 6).
 (b) More generally, prove that if a prime p = a² + ab + b², then p ≡ 1 (mod 6).
- 7. Suppose that $n \equiv 7 \pmod{8}$.
 - (a) Prove that there is a prime divisor $p \mid n$ such that $p \not\equiv 1 \pmod{8}$.
 - (b) Must there necessarily a prime divisor such that $p \equiv 7 \pmod{8}$?
- 8. Prove that $33 \mid (n^{10} 1)$ whenever n is coprime to 33.
- 9. Find all solutions of the congruences
 - (a) $18x \equiv 8 \pmod{34}$,
 - (b) $24x \equiv 15 \pmod{96}$,
 - (c) $17x \equiv 7 \pmod{21}$.

10. Find all solutions to the congruences $x \equiv 2 \pmod{5}$, $x \equiv 1 \pmod{6}$, $x \equiv 37 \pmod{55}$.

11. Find the smallest positive integer n that is a multiple of 10 but is not divisible by 3, 7, or 13.

- 12. Suppose that f is a multiplicative function satisfying f(4) = 8, f(5) = 5, and f(28) = 56. Calculate f(35).
- 13. Evaluate the sum $\sum_{d|405} \mu(d)d^2$.
- 14. How many integers from 1 to 92 are coprime to 92?
- 15. Use the theory of multiplicative functions to answer the following questions.
 - (a) How many distinct positive divisors does 3960 have?
 - (b) What is the sum of all of its divisors?
- 16. (a) Verify that the Carmichael number 561 is a pseudoprime for the base 3 (use efficient successive squaring).
 - (b) Is 561 a strong probable prime for the base 3?
- 17. Calculate the first several terms in the continued fraction expansions of

(a)
$$\sqrt[3]{5}$$
, (b) 2π .

- 18. If $\theta_1 = [2, 1, 4, 11, a_1, a_2, ...]$ and $\theta_2 = [2, 1, 4, 8, b_1, b_2, ...]$, find an upper bound for the difference $|\theta_1 \theta_2|$.
- 19. Find the solutions of $x^2 6y^2 = \pm 1$ by first calculating the continued fraction expansion of $\sqrt{6}$.
- 20. (a) Are $\frac{4}{7}$ and $\frac{13}{22}$ adjacent in any Farey sequence? If not, find a fraction with a smaller denominator that lies in between them.
 - (b) Given that $\frac{2}{5}$ and $\frac{3}{7}$ are adjacent in \mathcal{F}_7 , find the portion of the Farey sequence \mathcal{F}_{22} that lies in the range $[\frac{2}{5}, \frac{3}{7}]$.