
18.781 Solutions to Problem Set 10 - Fall 2008
Due Tuesday, Nov. 25 at 1:00

1. (Niven 7.4.4) (Tails don’t matter.) Consider the following phenomenon for decimal
approximations: if we pick a string of arbitrary digits, e.g. 466832 . . . and append
them to the decimal truncations of

√
2, then the sequence

1.466832 . . .

1.4466832 . . .

1.41466832 . . .

1.414466832 . . .

converges to
√

2 regardless of the appended digits.
Show that the same holds for continued fractions: if θ = [a0, a1, . . . ], and b1, b2, . . .

is any sequence of positive integers, prove that

lim
n→∞

[a0, a1, . . . , an, b1, b2, . . . ] = θ.

Let θn be the infinite continued fraction [a0, a1, . . . , an, b1, b2, . . . ]. We have that the
difference of θn and rn = hn

kn
= [a0, a1, . . . , an] is given by the formula involving the tail

β = [b1, b2, . . . ] of the series:

θn =
βhn + hn−1

βkn + kn−1
.

So the difference of θn and rn is

|θn − rn| =
∣∣∣∣βhn + hn−1

βkn + kn−1
− hn

kn

∣∣∣∣ = ∣∣∣∣ ±1
(βkn + kn−1)kn

∣∣∣∣ .
Therefore the difference between θn and rn has limit zero as n −→ ∞. Since, by
definition, θ is the limit of rn, this implies it is also the limit of θn.

2. (Niven 7.5.6) Suppose that θ = [a0, a1, . . . ] is an irrational simple continued fraction.
In this problem you will describe the continued fraction expansion of −θ.

(a) Show that −θ = [−a0,−a1,−a2, . . . ].
Hint: Write θn = an + 1

θn+1
, with θn := [an, an+1, . . . ], and use induction.

I proved this for finite continued fractions, using induction on the length. For the
base case, it is easy to see that −[a0] = [−a0]. Now if we assume for any length k
continued fraction that −[a0, a1, . . . , ak−1] = [−a0,−a1, . . . ,−ak−1]. Now we take
a length k + 1 fraction, [b0, b1, . . . , bn]. We have

−[b0, . . . , bk] = −b0 +
1

−[b1, . . . , bk]
= −b0 +

1
[−b1, . . . ,−bk]

= [−b0, . . . ,−bk].

This shows the result for finite continued fractions. Now for the continued fraction
of θ, we just use the limit definition:



−θ = lim
n−→∞

−[a0, a1, . . . , an] = lim
n−→∞

[−a0,−a1, . . . ,−an] = [−a0,−a1, . . . ].

(b) Show that if a1 > 1,

−θ = [−a0 − 1, 1, a1 − 1, a2, a3, . . . ],

and if a1 = 1,
−θ = [−a0 − 1, a2 + 1, a3, . . . ].

Hint: Expand −θ = −[a0, a1, θ2] and compare to the expressions above.
Say a1 > 1. Then

[−a0 − 1, 1, a1 − 1, a2, a3, . . . ] = [−a0 − 1, 1, (θ − a0)−1 − 1] = [−a0 − 1, 1 +
θ − a0

a0 + 1− θ
]

= −a0 − 1 + (a0 + 1− θ) = −θ.

If instead a1 = 1, then

[−a0 − 1, a2 + 1, a3 . . . ] = [−a0 − 1, ((θ − a0)−1 − 1)−1 + 1] = −a0 − 1 +
1

1 +
1

−1 +
1

θ − a0

= −a0 − 1 +
1

1 +
θ − a0

a0 + 1− θ

= −θ.

(c) An important theorem (Thm. 7.10 in Niven) states that each irrational number
is uniquely expressible as a simple continued fraction. Explain why parts (a) and
(b) do not contradict this fact.
The theorem assumes the continued fraction are simple, that is, they have the
form [a0, a1, . . . , an, . . . ] where ai is a positive integer for all i > 0, and a0 is any
integer. Part (a) has negative integers in all entries, so is not simple. Part (b) is
in fact the unique way to write −θ as a simple continued fraction.

3. Prove that 13
9 is a convergent of 3

√
3 by checking that the approximation is sufficiently

close.

We can check that the approximation is sufficiently close without using a calculator by
the following method:

(
13
9
− 3
√

3
)(

132

92
+

13 3
√

3
9

+ 3
√

9

)
=

133

93
− 3 =

10
729

.

Now, we can bound the second factor below by 3(4
3)2 = 16

3 , since 4
3 is clearly larger

than the cube root and the fraction. This in turn gives the following bounds on the
first factor:

0 <
13
9
− 3
√

3 <
5

1944
<

1
2 · 92

.

So the fraction must appear in the continued fraction expansion of 3
√

3.



4. (Periodic convergents.) In this problem you will explore a different set of convergents
of infinite continued fractions. Suppose that ξ = [a0, a1, . . . ], and define the periodic
convergents by ξn := [a0, a1, . . . , an].

(a) If hn = anhn−1 + hn−2 and kn = ankn−1 + kn−2 as usual, show that the periodic
convergents satisfy the quadratic equations

knξ2
n − (hn − kn−1)ξ − hn−1 = 0.

We use the same formula involving the tail of the continued fraction we used above,
but here we exploit the repeating nature of the fraction entries. In particular, we
have that ξn = [a0, a1, . . . , an, ξn], so the formula gives

ξn =
ξnhn + h1

ξnkn + kn−1
.

Clearing the denominator and collecting terms gives the quadratic equation above.
(b) Recall the standard finite convergents rn = hn

kn
= [a0, . . . , an] and prove that

|ξn − rn| <
1

knkn−1
.

Use the convergence of the rn to conclude that lim
n→∞

ξn = ξ as well.

So we use the same formula as above:

|ξn − rn| =
∣∣∣∣ ξnhn + h1

ξnkn + kn−1
− hn

kn

∣∣∣∣ = 1
(ξnkn + kn−1)kn

<
1

kn−1kn
.

Because this difference goes to zero as n increases to infinity, the two sequences
have the same limit, so we get that

lim
n−→∞

ξn = lim
n−→∞

rn = ξ

(c) Part (b) implies that the ξn form a sequence of quadratic irrationals that are better
and better approximations of ξ. Calculate the first three periodic convergents of
π = [3, 7, 15, 1, 292, . . . ].
The periodic convergents of π are [3], [3, 7], and [3, 7, 15]. These satisfy the respec-
tive quadratic equations x2−3x−1 = 0, 7x2−21x−3 = 0, and 106x2−325x−25 = 0,
and so are equal to

3 +
√

13
2

,
21 + 5

√
21

14
, and

325 + 5
√

4649
212

.

5. (Niven 7.7.3) Expand
√

15 into an infinite simple continued fraction (try to do it without
a calculator first!).

Without a calculator, you can do the following calculation:
√

15 = 3 + (
√

15− 3)

1√
15− 3

=
√

15 + 3
6

= 1 +
√

15− 3
6

6√
15− 3

=
6(
√

15 + 3)
6

= 6 + (
√

15− 3)

This repeated remainder gives the expansion
√

15 = [3, 1, 6].



6. Use a calculator to expand 13+3
√

11
7 into an infinite simple continued fraction. Once you

have obtained an answer, check that it is correct by solving the the resulting quadratic
equation.

If you calculated the continued fraction correctly, you should’ve gotten that

13 + 3
√

11
7

= [3, 3, 1, 1, 2].

So, letting y = [3, 1, 1, 2], we get the equation

y = 3 +
1

1 +
1

1 +
1

2 +
1
y

.

This comes to

y =
18y + 7
5y + 2

=⇒ 5y2 − 16y − 7 = 0 =⇒ y =
8 + 3

√
11

5

.

Now, we let x = [3, 3, 1, 1, 2] = 3 +
1
y

=
13 + 3

√
11

7
.

7. (Niven 7.8.8) Given that
√

18 = [4, 4, 8], find the least positive solution of x2−18y2 = −1
(if any), and of x2 − 18y2 = 1.

Looking at the first equation mod 3, we can see that it has no integer solutions, since(
−1
3

)
= −1.

Now, using convergents to
√

18, we get the first two convergents are 4 and 17
4 . We check

42− 18(1)2 = −2, but 172− 18(4)2 = 1. So this is the smallest integer solution of Pell’s
equation for d = 18.

8. Is the number 3.82842712474619 . . . likely to be a quadratic irrational? If so, identify
which one, and check that it matches all given digits.
(Hint: Calculate the first several terms in the continued fraction expansion.)

The first complete continued fraction for the decimal digits shown is

[3, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 1, 1, 2, 1, 8, 1, 2, 2, 2, 3, 1, 1, 3, 4, 1, 8].

This looks like the infinite decimal might represent [3, 1, 4]. Calculating the quadratic
irrational with this continued fraction, we get 1 + 2

√
2. This does match the decimal

expansion given above.


