18.781 Problem Set 11 - Fall 2008

Due Thursday, Dec. 4 at 1:00

Throughout this assignment, \mathcal{F}_n denotes the Farey sequence of order n.

- 1. Write the complete Farey sequence of order 7, \mathcal{F}_7 .
- 2. (Niven 6.1.1) Let $\frac{a}{b}$ and $\frac{a'}{b'}$ be the left and right neighbors (respectively) of $\frac{1}{2}$ in \mathcal{F}_n . Prove that b is the greatest odd integer less than n, and that a + a' = b.

3. (Niven 6.1.2) Let
$$S_n := 1 + \sum_{k=1}^n \phi(k)$$
.

- (a) Prove that \mathcal{F}_n consists of S_n distinct fractions.
- (b) Prove that the sum of all of the fractions in \mathcal{F}_n is $S_n/2$.
- 4. (Niven 6.1.4) Suppose that $\frac{a}{b}$ and $\frac{a'}{b'}$ are any two adjacent fractions in \mathcal{F}_n .

(a) Prove that
$$\left|\frac{a}{b} - \frac{a'}{b'}\right| \ge \frac{1}{n(n-1)}$$
.
(b) Prove that $\left|\frac{a}{b} - \frac{a'}{b'}\right| \le \frac{1}{n}$.

(c) Prove that both bounds are actually achieved by some choice of fractions.

- 5. (Niven 6.1.7 & 6.1.8)
 - (a) Let b_1, b_2, \ldots, b_s be the denominators of all fractions in \mathcal{F}_n read from left to right. Prove that

$$\sum_{k=1}^{s-1} \frac{1}{b_k b_{k+1}} = 1.$$

Hint: Place the Farey sequence on the unit interval [0, 1] and consider the distance between each successive fraction.

(b) Show that

$$\sum_{b,b'} \frac{1}{bb'} = 1,$$

where the sum is taken over all $1 \leq b, b' \leq n$ that satisfy (b, b') = 1 and b + b' > n. Hint: Consider the mediants of \mathcal{F}_n .

6. Continued fractions. If $\frac{a}{b} < \frac{k}{n} < \frac{a'}{b'}$ in \mathcal{F}_n , we define the neighbors of $\frac{k}{n}$ as the two surrounding fractions $\frac{a}{b}$ and $\frac{a'}{b'}$, and the children of $\frac{k}{n}$ as the mediants $\frac{a+k}{b+n}$ and $\frac{a'+k}{b'+n}$.

For example, the fractions $\frac{1}{3} \frac{2}{5} \frac{1}{2}$ are part of the sequence \mathcal{F}_5 . Therefore the neighbors of $\frac{2}{5}$ are $\frac{1}{3}$ and $\frac{1}{2}$, and its children are $\frac{3}{8}$ and $\frac{3}{7}$.

(a) Show that the neighbors of $\frac{a+k}{b+n}$ are $\frac{a}{b}$ and $\frac{k}{n}$, and that its children are $\frac{2a+k}{2b+n}$ and $\frac{a+2k}{b+2n}$.

- (b) Prove that the simple continued fractions $[a_0, a_1, \ldots, a_{r-1}]$ and $[a_0, a_1, \ldots, a_{r-1}, a_r]$ are adjacent in some Farey sequence.
- (c) As a simple consequence of (b), prove that $[a_0, a_1, \ldots, a_r]$ and $[a_0, a_1, \ldots, a_r + 1]$ are adjacent in some Farey sequence.
- (Bonus) Prove inductively that if $\frac{k}{n}$ has the continued fraction expansion $[a_0, a_1, \ldots, a_r]$ with $a_r > 1$, then its neighbors are $[a_0, a_1, \ldots, a_{r-1}]$ and $[a_0, a_1, \ldots, a_r - 1]$. Then prove that its children are $[a_0, a_1, \ldots, a_r + 1]$ and $[a_0, a_1, \ldots, a_r - 1, 2]$.
- 7. (Niven 6.1.9) The Ford circles of order n (denoted C_n) are the circles of radius $\frac{1}{2b^2}$ that are tangent to the *x*-axis at the fraction $\frac{a}{b} \in \mathcal{F}_n$. Prove that if $\frac{a}{b}$ and $\frac{a'}{b'}$ are adjacent Farey fractions, then the corresponding Ford circles are tangent.
- 8. (Niven 6.2.6) Suppose that an irrational number x lies between two consecutive fractions $\frac{a}{b}$ and $\frac{a'}{b'}$ in \mathcal{F}_n . Prove that either

$$\left|x-\frac{a}{b}\right| < \frac{1}{2b^2}$$
 or $\left|x-\frac{a}{b'}\right| < \frac{1}{2b'^2}$

- 9. Direct construction of \mathcal{F}_n . Suppose that $\frac{a}{b}$ is in \mathcal{F}_n . This problem describes a simple algorithm for finding the next fraction in the sequence (the algorithm actually requires keeping track of the two previous fractions).
 - (a) Recall that $\frac{a'}{b'}$ is adjacent (on the right) to $\frac{a}{b}$ in some Farey sequence if and only if a'b ab' = 1. Show that if $b + b' \leq n$, then $\frac{a}{b}$ and $\frac{a'}{b'}$ are not adjacent in \mathcal{F}_n .
 - (b) Show that $\frac{a'+ka}{b'+kb}$ is adjacent to $\frac{a}{b}$ in \mathcal{F}_n if and only if $b'+kb \leq n < b'+(k+1)b$.
 - (c) Explain how the Euclidean algorithm and part (b) can be used to find $\frac{a'}{b'}$ adjacent to $\frac{a}{b}$.
 - (d) Algorithm: Using part (c), we now have $\frac{a}{b}$ and $\frac{a'}{b'}$ adjacent (in order) in \mathcal{F}_n . Let $k := \lfloor \frac{n+b}{b'} \rfloor$. Prove that $\frac{c}{d} := \frac{ka'-a}{kb'-b}$ is then adjacent to $\frac{a'}{b'}$. Remark: The Euclidean algorithm is unnecessary in all subsequent steps, as we directly compute the next fraction using the previous two!
 - (e) Beginning from $\frac{3}{8}$, calculate the next five terms in \mathcal{F}_{13} .
- 10. Prove that $\alpha = \sqrt{7} + \sqrt{5}$ is an algebraic number by finding a polynomial f(x) with integral coefficients such that $f(\alpha) = 0$.