
18.781 Solutions to Problem Set 11 - Fall 2008
Due Thursday, Dec. 4 at 1:00

Throughout this assignment, Fn denotes the Farey sequence of order n.

1. Write the complete Farey sequence of order 7, F7.

Here’s a straightforward problem! We get:
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2. (Niven 6.1.1) Let a
b and a′

b′ be the left and right neighbors (respectively) of 1
2 in Fn.

Prove that b is the greatest odd integer less than n, and that a+ a′ = b.

From our knowledge of mediants and adjacent fractions in Fn, we know that for a
b to

be the left neighbor of 1
2 , we must have that b−2a = 1 and b+2 > n ≥ b. The equation

shows that b is odd, and the inequality shows that it is the greatest odd integer less
than or equal to n. The respective relations for a′

b′ are 2a′ − b′ = 1 and b′ + 2 > n ≥ b′.
These imply that b = b′, and then subtracting the equalities we get 2b− 2a− 2a′ = 0,
which gives a+ a′ = b.

3. (Niven 6.1.2) Let Sn := 1 +
n∑

k=1

φ(k).

(a) Prove that Fn consists of Sn distinct fractions.
This is done by induction. First we note that F1 has two fractions, 0

1 and 1
1 , and

Sn = 1 + φ(1) = 2. So the base case is satisfied.
Now assume that Sk−1 is the number of fractions in Fk−1. Then Fk consists of
all the fractions in Fk−1 and all the fractions between zero and one that have k
as their denominator when written in lowest terms. The possible numerators are
then all integers between 1 and k that are relatively prime to k, which is φ(k).
Thus, from our inductive hypothesis,

#(Fk) = #(Fk−1) + φ(k) = (1 +
k−1∑
i=1

φ(i)) + φ(k) = Sk.

So our result is proven, by induction.

(b) Prove that the sum of all of the fractions in Fn is Sn/2.
Consider all the fractions in Fn that are not 1

2 . These can be grouped into pairs
that sum to 1, because a

b is in Fn exactly when b−a
b is, since (a, b) = (b − a, b).

Since these pairs sum to 1, the sum of all fractions not equal to 1
2 is equal to this

number of pairs, which is half the number of fractions not equal to 1
2 . Now, the

only fraction that could’ve been left out is equal to 1
2 , so the sum of all the terms

in Fn is half the number of terms, or
Sn

2
.

4. (Niven 6.1.4) Suppose that a
b and a′

b′ are any two adjacent fractions in Fn.



(a) Prove that
∣∣∣∣ab − a′

b′

∣∣∣∣ ≥ 1
n(n− 1)

. (Assumption: n > 1.)

We have that |ab′ − a′b| = 1 and so (b, b′) = 1, so∣∣∣∣ab − a′

b′

∣∣∣∣ =
|ab′ − a′b|
|bb′|

=
1
bb′
.

But we know b and b′ are both less than or equal to n. Since they are also relatively
prime, the largest their product can be is n(n−1). Thus the smallest this fraction
could be is 1

n(n−1) .

(b) Prove that
∣∣∣∣ab − a′

b′

∣∣∣∣ ≤ 1
n
.

Using the same equality above, now we need to bound bb′ from below. We know
b and b′ are two positive integers that sum to a number greater than n (otherwise
their mediant would be in Fn. Minimizing xy for x+y ≥ n+ 1, x, y ∈ Z+ is easily
shown to be {x, y} = {1, n}, so the product is n, which corresponds to the bound
given.

(c) Prove that both bounds are actually achieved by some choice of fractions.
Sometimes success is in the first place you look. In this case, start with the first
three fractions in Fn, 0

1 ,
1
n ,

1
n−1 . The first two have the largest possible difference,

and the second two have the smallest.

5. (Niven 6.1.7 & 6.1.8)

(a) Let b1, b2, . . . , bs be the denominators of all fractions in Fn read from left to right.
Prove that

s−1∑
k=1

1
bkbk+1

= 1.

Hint: Place the Farey sequence on the unit interval [0, 1] and consider the distance
between each successive fraction.
Above, we showed that the difference between two successive fractions a

b and a′

b′

is exactly 1
bb′ . Thus it only depends on the denominators. Let’s sequence the

numerators of the fractions in Fn as a1, a2, . . . , as. Then we have that

s−1∑
k=1

1
bkbk+1

=
s−1∑
k=1

(
ak+1

bk+1
− ak

bk

)
=
as

bs
− a1

b1
=

1
1
− 0

1
= 1.

(b) Show that ∑
b,b′

1
bb′

= 1,

where the sum is taken over all 1 ≤ b, b′ ≤ n that satisfy (b, b′) = 1 and b+ b′ > n.
Hint: Consider the mediants of Fn.
The trick here is to show that this sum is the same as the previous one. This
involves showing that the indices match up in a one-to-one correspondence. The
hint says to consider mediants, indeed, the gaps between consectutive terms can



be indexed by their mediants. We know that two consecutive terms, a
b and a′

b′ ,
have the mediant a+a′

b+b′ , and b + b′ > n, since this fraction is not in Fn. Also, the
two denominators are relatively prime, since we know ab′ − a′b = ±1. So given
two consecutive fractions in the sum in the previous problem, a

b <
a′

b′ , we can map
that to the choice b, b′ in the indices in this sum.
Now we have to show the other direction, that any choice of b, b′ in this sum
associates to a unique pair of consecutive fractions in Fn. So we need to find
a, a′. This comes from knowing that we can solve the equation a′b− ab′ = 1. The
assumptions about b, b′ is that (b, b′) = 1, b+ b′ > n, and 1 ≤ b, b′ ≤ n. So the first
implies that this equation is solvable by some a0 and a′0. Now all the solutions of
a′b − ab′ = 1 are given by a0 + bt and a′0 + b′t, for t ∈ Z. So we can choose a so
that 0 ≤ a < b. This implies

1
b
≤ a′ < b′ +

1
b
, or 0 < a′ ≤ b′.

So the fractions a
b and a′

b′ have mediant a+a′

b+b′ . Since b+b′ > n, they are consecutive
in Fn, so we have shown that the indices match up.

6. Continued fractions. If a
b < k

n < a′

b′ in Fn, we define the neighbors of k
n as the two

surrounding fractions a
b and a′

b′ , and the children of k
n as the mediants a+k

b+n and a′+k
b′+n .

For example, the fractions 1
3

2
5

1
2 are part of the sequence F5. Therefore the neighbors

of 2
5 are 1

3 and 1
2 , and its children are 3

8 and 3
7 .

(a) Show that the neighbors of a+k
b+n are a

b and k
n , and that its children are 2a+k

2b+n and
a+2k
b+2n .

We know that the mediant of a
b and k

n is a+k
b+n , so in Fb+n, the sequence a

b ,
a+k
b+n ,

k
n

occurs. This shows the neighbors of a+k
b+n are as stated. Also, the children of a+k

b+n
are simply the mediants to either side of the fraction, so can be calculated by
summing numerators and denominators with either neighbor. We get 2a+k

2b+n to the
left and a+ 2kb+ 2n on the right.

(b) Prove that the simple continued fractions [a0, a1, . . . , ar−1] and [a0, a1, . . . , ar−1, ar]
are adjacent in some Farey sequence.

These are successive convergents, so we can write them as
hr−1

kr−1
and

hr

kr
. From

our knowledge of continued fractions, we know these satisfy

|hr−1kr − hrkr−1| = 1.

Furthermore, in Fkr , we have that the denominators are both less than or equal to
kr and the sum is greater than kr, so by the arguments in the previous problem,
the fractions are consecutive in Fkr .

(c) As a simple consequence of (b), prove that [a0, a1, . . . , ar] and [a0, a1, . . . , ar + 1]
are adjacent in some Farey sequence.
The fraction [a0, a1, . . . , ar + 1] equals the fraction [a0, a1, . . . , ar, 1], since

ar + 1 = ar +
1
1
.



Writing the second fraction this way, we can apply the previous problem to and
conclude that the fractions are consecutive in some Farey sequence.

(Bonus) Prove inductively that if k
n has the continued fraction expansion [a0, a1, . . . , ar]

with ar > 1, then its neighbors are [a0, a1, . . . , ar−1] and [a0, a1, . . . , ar − 1]. Then
prove that its children are [a0, a1, . . . , ar + 1] and [a0, a1, . . . , ar − 1, 2].

7. (Niven 6.1.9) The Ford circles of order n (denoted Cn) are the circles of radius 1
2b2

that
are tangent to the x-axis at the fraction a

b ∈ Fn. Prove that if a
b and a′

b′ are adjacent
Farey fractions, then the corresponding Ford circles are tangent.

The important part of this problem is to draw the picture correctly: the two circles that
are drawn should be resting on top of the number line, touching at the two fractions.
Then we can use the Pythagorean theorem to find the distance between the centers of
the two circles, which are at the points (a

b ,
1

2b2
) and (a′

b′ .
1

2b′2 ). We get that this distance
is [(

a

b
− a′

b′

)2

+
(

1
2b2
− 1

2b′2

)2 ] 1
2

=
(

1
b2b′2

+
(

1
4b4
− 1

2b2b′2
+

1
4b′4

)) 1
2

=
(

1
4b4

+
1

2b2b′2
+

1
4b′4

) 1
2

=
1

2b2
+

1
2b′2

.

So the distance between the two centers of circles is equal to the sum of their radii, so
the circles are tangent.

8. (Niven 6.2.6) Suppose that an irrational number x lies between two consecutive fractions
a
b and a′

b′ in Fn. Prove that either∣∣∣x− a

b

∣∣∣ < 1
2b2

or
∣∣∣∣x− a′

b′

∣∣∣∣ < 1
2b′2

.

We can use the previous problem. Since the two Ford circles that lie above the neigh-
boring fractions of x are tangent, at least one of them lies above x. This implies that
x is within the distance of the radius from the corresponding fraction on the number
line. But that is exactly what the above inequalities state.

9. Direct construction of Fn. Suppose that a
b is in Fn. This problem describes a simple

algorithm for finding the next fraction in the sequence (the algorithm actually requires
keeping track of the two previous fractions).

(a) Recall that a′

b′ is adjacent (on the right) to a
b in some Farey sequence if and only

if a′b− ab′ = 1. Show that if b+ b′ ≤ n, then a
b and a′

b′ are not adjacent in Fn.

This comes from the fact that if b+b′ ≤ n, then the mediant of the fractions, a+a′

b+b′ ,
has been inserted between them in Fn.

(b) Show that a′+ka
b′+kb is adjacent to a

b in Fn if and only if b′ + kb ≤ n < b′ + (k + 1)b.

We have that a′+ka
b′+kb is adjacent to a

b in some Farey sequence since (a′+ka)b− (b′+
kb)a = 1. Also, their mediant has denominator b′+ (k+ 1)b. So they are adjacent
in exactly the Farey sequences Fn with b′ + kb ≤ n < b′ + (k + 1)b.



(c) Explain how the Euclidean algorithm and part (b) can be used to find a′

b′ adjacent
to a

b .

So we can use the Euclidean algoritm to solve the equation bx− ay = 1 for x and
y in Z. Now, for the fractions to be adjacent in Fn, we want y to be such that
n−b < y ≤ n, which can be guaranteed by adding multiples of b to it while adding
multiples of a to x. Then if we have that solution, we let a′ = x and b′ = y. Then
from the above work, a′

b′ is the next term in Fn.

(d) Algorithm: Using part (c), we now have a
b and a′

b′ adjacent (in order) in Fn. Let
k := bn+b

b′ c. Prove that c
d := ka′−a

kb′−b is then adjacent to a′

b′ .
Remark: The Euclidean algorithm is unnecessary in all subsequent steps, as we
directly compute the next fraction using the previous two!
So here we just have to show that it satisfies the equations and inequalities above.
We have that

(ka′ − a)b′ − (kb′ − b)a′ = a′b− b′a = 1

and since n+ b− b′ < kb′ ≤ n+ b, we have

n− b′ < kb′ − b ≤ n.

So from the above work, we are done.

(e) Beginning from 3
8 , calculate the next five terms in F13.

From the Euclidean algorithm we get that the next fraction in F8 is 2
5 . But we

note that the mediant of these is in F13, so the next fraction in F13 is 5
13 . Then

we use part (d) to find the sequence:
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10. Prove that α =
√

7 +
√

5 is an algebraic number by finding a polynomial f(x) with
integral coefficients such that f(α) = 0.

The easiest way to do this is to find a linear combination of the powers of α that equal
zero. We have that the powers of α are

1,
√

5 +
√

7, 12 + 2
√

35, 26
√

5 + 22
√

7, 284 + 48
√

35, . . .

We note that 1, 12 + 2
√

35, and 284 + 48
√

35 can be combined to get 0:

(284 + 48
√

35)− 24(12 + 2
√

35) + 4 = 0.

This implies that α satisfies x4 − 24x2 + 4 = 0.


