
(1) (Niven 5.3.3) Find all PT’s whose terms form an

(a) Arithmetic progression
Such a triple would be of the form (b − d, b, b + d) for b, d ∈ Z+. To be Pythagorean
triples, we require

(b− d)2 + b2 = (b + d)2

2b2 − 2bd + d2 = b2 + 2bd + d2

b2 = 4bd

b = 4d.

Thus the PT’s that are arithmetic progressions are exactly those of the form (3d, 4d, 5d)
for d ∈ Z+.

(b) Geometric progression
Such a triple would be of the form (a, ar, ar2) for a ∈ Z+ and r ∈ Q. So we would have

a2 + a2r2 = a2r4

a2(1 + r2) = a2r4

r4 − r2 − 1 = 0.

So the quadratic formula gives that r2 =
1 +

√
5

2
, but this gives r 6∈ Q, so there are no

PT’s in a geometric progression.

(2) (Niven 5.3.7) For which n are there solutions to n = x2 − y2?
First, for n odd, we can write n = 2k + 1 for k ∈ Z. Then let x = k + 1 and y = k. Then

we get
x2 − y2 = (k + 1)2 − (k)2 = k2 + 2k + 1− k2 = 2k + 1 = n.

Next, for n even, we split it into two subcases. First suppose 4 divides n, so n = 4k. If
we let x = k + 1 and y = k − 1,

x2 − y2 = (k + 1)2 − (k − 1)2 = k2 + 2k + 1− (k2 − 2k + 1) = 4k = n.

If instead n is even but not divisible by 4, there is a simple proof that n cannot be written
as a difference of squares looking at the number mod 4. The set of squares mod 4 are {0, 1},
and a difference of two elements of that set can only give 0 or ±1.

Thus those n that can be written as a difference of squares are exactly the n not congruent
to 2 mod 4.

(3) (Niven 5.3.9) Prove that any integer n can be expressed in the form

n = x2 + y2 − z2.

This is easily proved from the previous problem. If we let x = 0, we have shown that
there are integers y and z satisfying the equation for all n not congruent to 2 mod 4. In this
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last case, instead let x = 1. Then n− 1 is congruent to 1 mod 4, so there are y and z with

y2 − z2 = n− 1,

from the last problem. This gives the solution, so we are done.

(4) Find [sic] all PPT’s with c = a + 2.
We want to find integers a and b such that

a2 + b2 = (a + 2)2.

Expanding the right side and canceling gives

b2 = 4a + 4.

So b must be even. Say b = 2k. Then the triple that can be formed is

(a, b, c) = (k2 − 1, 2k, k2 + 1).

These are the only such triples, and they give triples for all k > 1.
(5) The n-th triangular number is given by Tn := 1 + 2 + · · ·+ n.

(a) Prove using induction that Tn =
n(n + 1)

2
.

The base case is easy: T1 = 1 =
1(2)
2

. Now for the inductive step.

Assume Tn =
n(n + 1)

2
. Then we have the following series of equalities:

Tn+1 = 1 + 2 + · · ·+ n + (n + 1) = Tn + (n + 1) =

=
n(n + 1)

2
+ (n + 1) =

n(n + 1) + 2n + 2
2

=
(n + 1)(n + 2)

2
.

This completes the inductive step, so by induction, the formula holds for all positive
integers n.

(b) Prove that for any n there is a PPT containing 4Tn.
It is easy to see that (2n + 1, 2n(n + 1), 2n(n + 1) + 1) is a PPT. It is primitive because
the last two entries differ by 1. Finally, by the previous part, the middle term is exactly
the formula for 4Tn.

(6) Prove that
n∑

i=1

1
i(i + 1)

=
n

n + 1
.

This is also done using induction. The base case can be cleverly chosen to be n = 0, this
corresponds to an empty sum on the left (zero) and 0

1 on the right. Using the base case
n = 1 also works just fine.



The inductive step starts by assuming the equation for n. Now adding the next term to
both sides, we have

n∑
i=1

1
i(i + 1)

+
1

(n + 1)((n + 1) + 1)
=

n

n + 1
+

1
(n + 1)((n + 1) + 1)

=
n(n + 2) + 1

(n + 1)(n + 2)
=

=
n2 + 2n + 1

(n + 1)(n + 2)
=

(n + 1)2

(n + 1)(n + 2)
=

n + 1
n + 2

.

This proves the inductive step, so by induction the formula holds for all n ∈ Z+.

(7) (a) Find all rational points on the circle x2 + y2 = 2, using (1, 1) as the starting point.
This is done by fixing a line with rational slope a through (1, 1) and finding the second
point of intersection (x, y) of the line with the circle. This involves some simple algebra,
the simultaneous solution of the two equations

y − 1
x− 1

= a

x2 + y2 = 2.

This solves to give you the trivial solution x = y = 1 and the point sought after:

(x, y) =
(

1− 2(a + 1)
a2 + 1

, 1− 2a(a + 1)
a2 + 1

)
.

(b) Try to use the same method to find all rational points on x2+y2 = 3. What goes wrong?
The problem here is that there is no point to start with. As such, any line with rational
slope can simply intersect the circle at two points that each have irrational coordinate(s).
Without the basepoint, we don’t know that the other point will give us a point with two
rational coordinates. As the (Bonus) suggests, it turns out there is no rational point on
this circle!
The argument to use here is to show that a solution in rationals would give an integer
solution to x2 + y2 = 3z2, and this can be chosen with the x, y, and z not all sharing a
common factor. Now look at this equation mod 4.

(8) (Niven 1.2.2) Find the greatest common divisor g = (1819, 3587), and find x, y such that

1819x + 3587y = g.

The Euclidean algorithm gives the following:

587 = 1819 · 1 + 1768
1819 = 1768 · 1 + 51
1768 = 51 · 34 + 34

51 = 34 · 1 + 17
34 = 17 · 2.



So g = 17. Working backwards through the algorithm, we get

1819 · (71) + 3587 · (−36) = 17.

(9) (Niven 1.2.9) Show that if ac|bc, then a|b.
ac|bc means ∃x ∈ Z such that (ac)x = (bc). Then (ax)c = bc which implies ax = b, or a|b.

(10) (Niven 1.2.10) Show that if a|b and c|d, then ac|bd.
a|b and c|d, so ∃x, y ∈ Z with ax = b and cy = d. Multiplying these two equations gives

bd = (ax)(cy) = (ac)(xy).

Thus, ac|bd.

(11) (Niven 1.2.11) Prove that 4 6 |(n2 +2) for any n. Suppose first that n is odd. Then n = 2k+1
for some k ∈ Z. This gives

(n2 + 2) = (2k + 1)2 + 2 = 4k2 + 4k + 1 + 2 = 4(k2 + k) + 3.

Thus if 4|(n2 + 2), then 4|3, which is clearly false. So this case is finished.
If instead n is even, n = 2k. So

(n2 + 2) = (2k)2 + 2 = 4k2 + 2.

So here, if 4|(n2 + 2), then 4|2, again a contradiction. Therefore for any n, 4 6 |(n2 + 2).

(12) (Niven 1.2.12) Given that (a, 4) = (b, 4) = 2, prove that (a + b, 4) = 4.
Since (a, 4) = 2, 2|a, so a = 2m for m ∈ Z. But we also know 4 6 |a, so 2 6 |m, and so

m = 2n + 1 for n ∈ Z. This gives a = 4n + 2, and similarly b = 4k + 2 for some k ∈ Z. So
we now have that

a + b = (4n + 2) + (4k + 2) = 4n + 4k + 4 = 4(n + k + 1)

So 4|(a + b), which shows that (a + b, 4) = 4.

(13) (Niven 1.2.17) Evaluate (n, n + 1) and [n, n + 1].
Any common divisor of n and n + 1 would have to divide their difference, which is 1.

Therefore (n, n + 1) = 1.
Suppose [n, n + 1] = an = b(n + 1). Then

b = an− bn = (a− b)n.

This shows n|b, so the least common multiple is at least n(n + 1). But this is obviously a
common multiple, so [n, n + 1] = n(n + 1).

(14) (Niven 1.2.36) Prove that (a, b, c) = ((a, b), c).
The left side is the greatest positive integer that divides a, b, and c. Thus it divides (a, b),

by Theorem 1.4, so is no more than the right side. But the right side clearly divides (a, b),
so it divides a and b, by transitivity, as well as c, so is less than or equal to the left side.
Therefore the two sides are equal.



(15) (Niven 1.2.43) Prove that a|bc if and only if a
(a,b) |c.

(⇒) We have a|bc, so ax = bc for some x ∈ Z. Letting g = (a, b), we know g divides a
and b, so we can write mgx = ngc for integers m,n. So mx = nc (or m|nc) and (m,n) = 1,
since otherwise g was not the greatest common divisor of a and b. So Theorem 1.10 gives
that m|c. But by construction, m =

a

(a, b)
, so we are done.

(⇐) If a
(a,b) |c, then multpilying both by (a, b) gives that a|(a, b)c. Now, by transitivity,

since (a, b)|b, a|bc.

(16) Prove that in the Euclidean algorithm, ri+2 < 1
2ri.

We can break this into cases: first assume that ri+1 ≤ 1
2ri. Then since the remainders

strictly decrease, we have ri+2 < ri+1 ≤ 1
2ri, so we are done.

Now, if instead ri+1 > 1
2ri, let’s carry out the divsion of ri by ri+1.

ri = ri+1 · 1 + (ri − ri+1)
This is the division because we know 2ri+1 > ri. So

ri+2 = ri − ri+1 < ri −
1
2
ri =

1
2
ri.

So we have proven it for each case.
This gives the bound on the total number of steps equal to 2dlog2(n)e, for n the first

dividend, since we know every two steps the remainders are at most half of what they were.

(17) (Niven 1.2.45) Prove that any positive integer a can be uniquely expressed as

a = 3m + bm−13m−1 + · · ·+ b13 + b0,

where bi = 0, 1 or −1.
One way to show this is by induction on m. What is tricky here is to be sure to formulate

your inductive hypothesis correctly. What I want to show is true is that given any n a
nonnegative integer, all positive integers less than 1

23n can be written in the above form,
with m < n. The base case is easy: we need to show it for integers less than 1

231 = 1.5, so
it is just for 1 = 30.

Now for the inductive step. Assume for that all integers from 1 to 1
23n can be expressed

in the given form. Now we want to show that for any integer M from the range (1
23n, 1

23n),
we can write it in that form.

So we have 1
23n < M < 1

23n+1. The inequalities are strict because the fractions will never
be integers. Now consider M − 3n = M ′. From simple arithmetic, we have

−1
2
3n ≤ M ′ <

1
2
3n.

Therefore, by the inductive step, we have that |M ′| = 3r + br−13r−1 + · · ·+ b0 for r < n.
This gives that

M = 3n + M ′ = 3n ± |M ′| = 3n ± 3r ± br−13r−1 ± · · · ± b0.



This shows that M can be written in the necessary form.
To show this form is unique, assume we had

3m + am−13m−1 + · · ·+ a0 = 3n + bn−13n−1 + · · ·+ b0,

two different representations of the same number, and have it be the example that has the
smallest maximal power of 3, say m. Looking at each side, all summands are divisible by 3
except for a0 and b0. Therefore 3|(b0−a0). But since these two numbers are each 0, 1 or −1,
that shows that in fact a0 = b0. Subtracting them from each side and dividing by 3 gives

3m−1 + am−13m−2 + · · ·+ a23 + a1 = 3n−1 + bn−13n−2 + · · ·+ b23 + b1,

and this example has a smaller maximal power of 3, namely m− 1. This is a contradiction,
so there cannot be two different representations of the same number.


