
Solutions to 18.781 Problem Set 2 - Fall 2008
Due Tuesday, Sep. 23 at 1:00

1. (Niven 1.3.39) Prove that
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You may find it easier to prove a general statement!

This problem hints at a general statement, with 2008 replaced by any (even) integer:
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We can prove this using induction on n. For the base case, n = 1, we just have 1− 1
2 = 1

2 ,
which is clear enough. Now let’s assume the equation for some fixed n. Then we can
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This shows that assuming the formula for n implies the formula holds for n + 1, thus
the inductive hypothesis is true for all positive n.

2. (Niven 1.3.4, 1.3.5, and 1.3.8) Write n = amam−1 . . . a1a0 in decimal digits, so that
n = am10m + am−110m−1 + · · ·+ a110 + a0.

(a) Prove that n is divisible by 3 if and only if am + am−1 + · · ·+ a0 is divisible by 3.
We can rewrite n in the following way:

n = (am10m + am−110m−1 + · · ·+ a110 + a0)

= am(10m − 1) + am−1(10m−1 − 1) + · · ·+ a1(10− 1) + am + am−1 + · · ·+ a1 + a0)

Now note that since 10 ≡ 1 (mod 3), 10k ≡ 1k ≡ 1 (mod 3). Thus 3|(10k − 1) for
any k ∈ Z+. Therefore all the summands before am are divisible by 3, so

3|n ⇔ 3|(am + am−1 + · · ·+ a1 + a0).

(b) Prove that n is divisible by 9 if and only if am + am−1 + · · ·+ a0 is divisible by 9.
This solution is virtually identical to the above one, with 3 replaced by 9. Note
the crucial property of 3 that was used is 10 ≡ 1 (mod 3). Since this also holds
mod 9, the proof works here.



(c) Prove that n is divisible by 11 if and only if

am − am−1 + am−2 − · · ·+ (−1)m−1a1 + (−1)ma0

is divisible by 11.
Once again a similar solution is employed. But here we have 10 ≡ −1 (mod 11).
Thus we get

n ≡ am10m + am−110m−1 + · · ·+ a110 + a0

≡ am(−1)m + am−1(−1)m−1 + · · · − a1 + a0 (mod 11)

Since divisibility by 11 depends only on whether n ≡ 0 (mod 11), we can multiply
by (−1)m to get that

11|n ⇔ 11|(am − am−1 + am−2 − · · ·+ (−1)m−1a1 + (−1)ma0).

(d) Prove that n is divisible by 7 if and only if n′ − 2a0 is divisible by 7, where
n′ = (n− a0)/10. Explain how this can be iterated to give a divisibility test for 7
and use it on n = 39333.
First, it is clear that n′ is an integer, because n− a0 is divisible by 10. So we have

n′ − 2a0 =
n− a0

10
− 2a0 =

n− 21a0

10

This gives that

7|(n′ − 2a0) ⇔ 7|n− 21a0

10
⇔ 7|(n− 21a0) ⇔ 7|n.

So we can iterate this method, and each step reduces the number of digits of n by
one, so it rapidly becomes a one-digit number. The final number is 0 or ±7 if and
only if the n we started with is divisble by 7. Using this on 39333:

n0 = 39333 ⇐ n1 = 3933− 2(3) = 3927 ⇐ n2 = 392− 2(7) = 378
⇐ n3 = 37− 2(8) = 21 ⇐ n4 = 2− 2(1) = 0.

So 7|39333.

(Bonus) For any prime p > 5, use the fact that there exists a solution to xp ≡ 1 (mod 10)
to devise a divisibility test.

3. (Niven 1.3.10 and 1.3.26)

(a) Prove that any number of the form 3k + 2 has a prime factor of the same form.
Do the same for numbers of the form 4k + 3 and 6k + 5.
Consider some n ≡ 2 (mod 3). We know that we can write the integer n as a
product of primes pn1

1 pn2
2 · · · pnr

r . Now assume none of the primes that divide n is
of the form 3k + 2. Then each pi is congruent to 0 or 1 mod 3. But a product of
0’s and 1’s is either 0 or 1, so that implies n 6≡ 2 (mod 3). This is a contradiction,
so our assumption must be false, so there is some pi ≡ 2 (mod 3).



The proofs for the forms 4k + 3 and 6k + 5 are quite similar, but you look mod
4 (and mod 6, respectively). Also, here you need to argue that any product of
any integers congruent to 0,1,2 (respectively 0,1,2,3,4) cannot generate an integer
congruent to 3 (5). This is done by showing that if 2 (respectively 2,3, or 4) occurs
in a product, then the product must be divisible by 2 (respectively 2 or 3) and
thus cannot be in the prescribed form.

(b) Prove that there are infinitely many primes of the form 3k + 2, 4k + 3, and 6k + 5.
We can once again prove all three with the same method. I’ll illustrate the tech-
nique with the case 4k + 3. Assume, for the sake of a contradiction, that there is
a finite list of primes of the form 4k + 3, say {p1, p2, . . . , pN}. Then let

A = 4p1p2 · · · pN − 1 ≡ 3 (mod 4).

By the above argument, there is some prime of the form 4k + 3 that divides A,
but it obviously isn’t in our list, since all of the primes there divide A + 1. Thus
there is a prime that we left out of our finite list, and this contradiction proves
there are infinitely many in that form.

4. (Niven 1.3.21) Prove that for positive integers a, b, c,

[a, b, c](ab, bc, ca) = abc.

On page 25 of Niven, we find a formula for the lcm and gcd of two integers using the
prime factorizations of the integers. These formulae can actually be extended to more
than two integers in the following way. If f(n, p) is the power of prime p that occurs in
the prime factorization of n, we have:

f([n1, . . . , nr], p) = max
i

(f(ni, p)) and f((n1, . . . , nr), p) = min
i

(f(ni, p)).

This generalization was covered in class, so I won’t explain it here. Now we use these
formulae to show that the two sides of the equation we are to prove have the same
prime factorizations. Choose any prime p. Then we want to show

f([a, b, c](ab, bc, ca), p) = f(abc, p).

The right side is simple to compute: since it is just a product, we add the exponents of
each prime, so

f(abc, p) = f(a, p) + f(b, p) + f(c, p).

On the left, we also have a product, and then using the formulae we get

f([a, b, c](ab, bc, ca), p) = f([a, b, c], p) + f((ab, bc, ca), p)
= max(f(a, p), f(b, p), f(c, p)) + min(f(ab, p), f(bc, p), f(ca, p))

= max(f(a, p), f(b, p), f(c, p))+min(f(a, p)+f(b, p), f(b, p)+f(c, p), f(c, p)+f(a, p).

So this is the sum of the max of the set {f(a, p), f(b, p), f(c, p)} and the min of the
pairwise sums of the same set. This is obviously just the sum of the elements of the
set. So we finally get

f([a, b, c](ab, bc, ca), p) = f(a, p) + f(b, p) + f(c, p) = f(abc, p).



Since every integer has a unique prime factorization, we have shown that, in fact,

[a, b, c](ab, bc, ca) = abc.

5. (a) Prove that there is not unique factorization in the set {a + b
√
−7 | a, b ∈ Z}. We

have the following two decompositions of the number 8 in this set:

23 = 8 = (1 +
√
−7)(1−

√
−7).

So if we can show that these factors don’t reduce further, we have disproven unique
factorization in this ring. It is easy to see that 2 6 |(1 ±

√
−7), since any number

divisible by two has coefficients that are even. Finally, two can be shown to be
irreducible, since it is smaller than any number that can be written as the product
(a + b

√
−7)(a − b

√
−7), and this is the only nontrivial product that could give a

real prime number. Thus this ring does not have unique factorization.
(b) If D is an odd, positive integer that is not a square number, prove that there is

not unique factorization in {a + b
√
−D | a, b ∈ Z}.

This can be done by generalizing the above idea. First we note that the last
argument holds to show that for any D ≥ 3, two is irreducible in the ring of
numbers of the form a + b

√
−D.

Using this, we can show that there will always be a number in the ring with two
distinct decompositions. We know that D is odd, so we can write:

2k = D + 1 = (1 +
√
−D)(1−

√
−D).

Since 2 is irreducible, if this set of numbers had unique factorization, 2 would
divide either (1 +

√
−D) or (1 −

√
−D). But it’s obvious that 2 cannot divide

either of these because any multiple of 2 has even coefficients:

2(a + b
√
−D) = 2a + 2b

√
−D.

This contradicts the assumption that this set has unique factorization, so it does
not.

(Bonus) Consider the Gaussian integers, which is the set of “integer coordinate complexes”:
{a + bi | a, b ∈ Z}. Prove that in this set, p = 1 + i has the following property of
prime numbers:
If p | (a + bi)(c + di), then either p | (a + bi) or p | (c + di).

6. (Niven 2.1.7) Show that if f(x) is a polynomial with integral coefficients and f(a) ≡
k mod m, then f(a + tm) ≡ k (mod m) for any t.

Another way this problem can be phrased is

a ≡ b (mod m) =⇒ f(a) ≡ f(b) (mod m).

This is simply the consequence of addition and multiplication being well defined. That
is, we know that a ≡ b and c ≡ d mod m gives the congruences

a + c ≡ b + d; ac ≡ bd (mod m).

Knowing this, since any polynomial is just a combination of additions and multiplica-
tions, we get that polynomials are also well defined mod m.



7. (Niven 2.1.20) Prove that 42 | (n7 − n) for any n.

Observe that we need to show that 2, 3, and 7 all divide (n7−n). But this is equivalent
to showing

n7 ≡ n (mod a)

for n ∈ Z and a ∈ {2, 3, 7}. Here, we can use Fermat’s Little Theorem: in mod 7, for
example, we know that n7 ≡ n, so this holds. For the other two moduli, 2 and 3, the
congruence we have from Fermat’s Little Theorem implies the necessary equivalence,
so we are done.

8. (Niven 2.1.25) Prove that 91 | (n12−a12) for any a, n that are both coprime to 91. Give
an counterexample showing that this condition is necessary.

Note that 91 = 7 · 13, so we want to show that any two numbers that aren’t divisble
by 7 or 13 have equivalent twelfth powers mod 7 and mod 13. Once again, Fermat’s
Little Theorem can be used. In mod 7, we know for any n 6≡ 0 we have n7−1 ≡ n6 ≡ 1
(mod 7). Squaring this gives n12 ≡ 1 (mod 7), so all numbers not divisible by 7 have
congruent twelfth powers mod 7.

For Fermat’s Little Theorem applied to the prime 13, we immediately get the congruence
n13−1 ≡ n12 ≡ 1 (mod 13) for all n not divisible by 13. Thus we have shown that all
n with (91, n) = 1 have equivalent twelfth powers mod 7 and mod 13, and thus they
have equivalent twelfth powers mod 91.

9. (Niven 2.1.27) Prove that 1
5n5 + 1

3n3 + 7
15n is an integer for any n.

First, let’s collect the fractions into one fraction with a common denominator:

1
5
n5 +

1
3
n3 +

7
15

n =
3n5 + 5n3 + 7n

15
.

So if we show that 15|(3n5+5n3+7n) for all n ∈ Z, we are done. Being divisible by 15 is
equivalent to being divisible by 3 and 5 simultaneously. Looking at f(n) = 3n5+5n3+7n
in these two moduli, we have

f(n) ≡ 2n3 + n (mod 3) and f(n) ≡ 3n5 + 2n (mod 5).

Now, Fermat’s Little Theorem tells us that for any prime p and integer a,

ap ≡ a (mod p).

This makes these two congruences into:

f(n) ≡ 2n + n ≡ 0 (mod 3) and f(n) ≡ 3n + 2n ≡ 0 (mod 5).

So in fact, f(n) is divisible by both 3 and 5 for every n ∈ Z. Therefore 15|f(n) which
implies that the original polynomial is an integer for every n ∈ Z.

10. (Niven 2.2.2) Let N(k) denote the number of solutions to f(x) ≡ k (mod m). Prove
using a simple counting argument that

m∑
k=1

N(k) = m.



This argument is actually quite straightforward. There are m numbers mod m. Any
one of these numbers, call in a, is a solution to exactly one of the m equivalences
f(x) ≡ k (mod m), namely, when k ≡ f(a) (mod m). Thus in the sum

m∑
k=1

N(k)

each number mod m gets counted exactly once, and no number gets skipped, so the
sum must equal m.

11. (Niven 2.2.5acd) Find all solutions of the congruences

(a) 20x ≡ 4 (mod 30),
This congruence has no solutions. This is because the left side of the congruence
can only be congruent to 0, 10, or 20. This is because 20 and 30 share the common
factor 10.

(b) 353x ≡ 254 (mod 400),
For this congruence, we can see that x needs to be even. Thus if we let x = 2y
then we are solving the reduced congruence 353k ≡ 127 (mod 200). Now to find
the inverse of 353 ≡ −47, we use the Euclidean algorithm:

200 = 47(4) + 12 1 = 12(1) + 11(−1)
47 = 12(3) + 11 ↗ 1 = 12(4) + 47(−1)
12 = 11(1) + 1 1 = 200(4) + 47(−17).

This shows that 17 is the inverse of (-47) (mod 200). Thus the solution to the
reduced congruence is

k ≡ (17)(127) ≡ 2159 ≡ 159 (mod 200).

Since x = 2k, x = 318. This solution is unique, mod 400, since (353, 400) = 1.

(c) 57x ≡ 87 (mod 105).
We can reduce this congruence by dividing by 3:

19x ≡ 29 (mod 35).

Now, since (19, 35) = 1, there will be exactly one solution to this congruence. Using
the same method illustrated above, we find that (31)(19) ≡ 29 (mod 35). Now we
move this solution up to mod 105, and we have to take care that it will split into
3 solutions, every number that is congruent to 31 mod 35. So the complete set of
solutions is

x ≡ 31, 66, or 101 (mod 105)

(Bonus) Postage stamp problem. Since (5, 12) = 1, we know that the linear combination
5x + 12y = n can be solved for all n. However, consider the related problem of
characterizing positive linear combinations, with x, y ≥ 0 (this situation would
arise if we had only 5 and 12 cent stamps). In that case, we cannot solve the cases
n = 1, 2, 3, 4, 6, . . . .



(a) Prove that there is some bound N such that 5x + 12y = n has solutions
whenever n ≥ N . List all of the n for which there is no solution - how many
such n are there?

(b) Repeat part (a) for general (a, b) = 1: find a bound N such that ax + by = n
has solutions for n ≥ N , and characterize and count the n for which there is
no solution.


