
Solutions to 18.781 Problem Set 3 - Fall 2008
Due Tuesday, Sep. 30 at 1:00

1. (Niven 2.3.3) Solve the congruences x ≡ 1 (mod 4), x ≡ 0 (mod 3), x ≡ 5 (mod 7).

First we note that 4, 3, and 7 are pairwise relatively prime, so there is a unique solution
in the modulus 4 · 3 · 7 = 84, by the Chinese Remainder Theorem. By inspection, the
first two congruences imply that x ≡ 9 (mod 12). So we need to solve

9 + 12y = 5 + 7z

for integers y, z. Solving the Diophantine equation in the usual way, we find that one
solution is (y, z) = (3, 4), and this gives our final result, that

x ≡ 33 (mod 84).

2. (Niven 2.3.8) Find the smallest positive integer whose remainder is 1, 2, 3, 4, and 5 when
divided by 3, 5, 7, 9, and 11, respectively. What is the second smallest such integer?

This problem is straightforward... the smallest positive integer giving any particular
(postive) remainder is just the solution to the simultaneous congruences implied by the
remainders. This will use CRT, but first we want to check all the moduli to make sure
they are pairwise relatively prime. The only pair that are not are 3 and 9, but the two
related congruences are

x ≡ 1 (mod 3) and x ≡ 4 (mod 9).

It is easy to see that the second congruence implies the first; that is, any x giving 4 as
a remainder when divided by 9 must give the remainder 1 when divided by 3. So we
can ignore the first congruence, and the remaining 4 congruences can be solved using
the iterative method discussed in problem 4.

We start with the list a1,m1, a2,m1, a3,m3, a4,m4 = 2, 5, 3, 7, 4, 9, 5, 11. The first step
replaces the first 4 terms with a′ = 2 + (3− 2)3 · 5 = 17 and m′ = 5 · 7 = 35, so we are
left with the reordered list 4, 9, 5, 11, 17, 35.

Now we replace the first 4 terms with a′ = 4 + (5− 4)5 · 9 = 49 and m′ = 9 · 11 = 99.
So this gives us the list 17, 35, 49, 99. We finally have to solve this pair of congruences,
and so using the Euclidean algorithm we can find that x ≡ 17 (mod 35) and x ≡ 49
(mod 99) gives that

x ≡ 1732 (mod 3465).

So the smallest postive number giving all of the requested remainders is 1732. The next
smallest number is just 1732 + 3465 = 5197.

3. (Niven 2.3.18) For any k ≥ 1, prove that there exist k consecutive positive integers that
are each divisible by a square number. For example, the sequence {48, 49, 50} works
for k = 3.

We have to prove this for any arbitrary k ∈ Z, so fix such a k. The problem is to find
an N such that the set of integers {N − k + 1, N − k + 2, . . . , N} contains only integers
that are divisible by squares. We use our knowledge of modular arithmetic to find such



an N . Consider the first k primes, call them p1 = 2, p2 = 3, . . . , pk. These primes
are clearly all pairwise relatively prime, since they are distinct primes. In fact, the
list of their squares, 4, 9, 25, . . . , p2

k, are also pairwise relatively prime, since no pair of
them share a prime factor. Then there is always a unique solution to the simultaneous
congruence

x ≡ a1 (mod 4),
x ≡ a2 (mod 9),
...

x ≡ ak (mod p2
k),

by the Chinese Remainder Theorem. Let ai = i− 1 for all 1 ≤ i ≤ k. Then we have a
solution x ∈ Z with x ≡ i− 1 (mod p2

i ) for all 1 ≤ i ≤ k This congruence is equivalent
to

p2
i |(x− (i− 1)) for all i ∈ {1, 2, . . . , k}.

Letting i run over the k values, we get that the integers from x − k + 1 to x are each
divisible by a square of a prime. Thus x is exactly the N for which we were looking.

4. This problem presents an iterative approach to solving the simultaneous congruences
x ≡ a1 (mod m1), x ≡ a2 (mod m2), . . . x ≡ ak (mod mk), where all of the mi are
coprime (thereby proving CRT). This technique is especially useful when the ai are all
relatively close in value. The algorithm follows:

(i) Given a1,m1, a2,m2, . . . , ak,mk, re-number indices so that a1 ≤ a2 · · · ≤ ak.
(ii) Use the Euclidean algorithm to find y such that ym1 ≡ 1 (mod m2).
(iii) Set a′ := a1 + (a2 − a1)ym1 (mod m′), where m′ = m1m2.

(iv) If k ≥ 3, return to step (ii) with a′,m′, a3,m3, . . . , ak,mk.

(a) Prove that the algorithm works by showing that the final output a′ is the unique
solution x modulo m1m2 · · ·mk (the main details to verify are in (iii)).

(b) Solve the congruences x ≡ 4 (mod 5), x ≡ 5 (mod 7), x ≡ 6 (mod 11).

(a) To show that the method works, we only have to show that each step can be done,
and that each step preserves the set of solutions. The first one is easy to check for
each of the four steps:
(i) Clearly no problem here, you can always order integers from least to greatest.
(ii) Here we need to be able to find a multiplicative inverse to m1 mod m2, but

this is guaranteed as long as the mi’s are pairwise coprime.
(iii) This step is no problem, we are just setting a′ and m′ equal to values, and

clearly m′ will still be coprime to the remaining mi’s since m1 and m2 were.
(iv) This just returns to a previous step, so will never fail.
So the steps will always be executable. Now to show that the original set of
congruences is equivalent to the set with a1,m1, a2,m2 replaced with a′,m′. We
have that if x ≡ a′ (mod m′), then

x ≡ a1 + (a2 − a1)ym1 ≡ a1 (mod m1),
x ≡ a1 + (a2 − a1)ym1 ≡ a1 + (a2 − a1) · 1 ≡ a2 (mod m2).



So if x a solution to the second (primed) set of equivalence classes, then it is a
solution to the first. Now we would like to show that it is the unique solution. So
say we had another solution, x′, which satisfies the first set of equalities. Then we
know that x′ ≡ x (mod mi) for every i. But this implies that m1 and m2 both
divide x−x′, and since they are coprime, their product must divide this difference.
Thus x′ ≡ x (mod m′). This shows that x satisfies the first set of solutions if and
only if it satisfies the second set of solutions, and so the iterative process works in
every step.
So by induction, the final solution, which is just a congruence class modulo the
product of the mi’s, is the unique solution of the set of congruences in the begin-
ning.

(b) We start with x ≡ 4 (mod 5), x ≡ 5 (mod 7), x ≡ 6 (mod 11). Since 5 · 3 ≡ 1
(mod 7), we get the set of equivalences

x ≡ 4 + (5− 4)3 · 5 ≡ 19 (mod 5 · 7 = 35) and x ≡ 6 (mod 11).

Now, 35 · 6 = 210 ≡ 1 (mod 11), so we finally have

x ≡ 19 + (6− 19)6 · 35 ≡ −2711 ≡ 369 (mod 385).

5. (Niven 2.3.20) Prove that there is a simultaneous solution of x ≡ a1 (mod m1), x ≡
a2 (mod m2) iff a1 ≡ a2 (mod (m1,m2)). Prove that the solution is unique modulo
[m1,m2].

We can prove this if and only if statement with a string of equivalences. We start with
the left side of the equation:

∃x ∈ Z s.t. x ≡ ai (mod mi) for i ∈ {1, 2}
⇔ ∃ni ∈ Z s.t. a1 + m1n1 = a2 + m2n2

⇔ ∃ni ∈ Z s.t. m1n1 −m2n2 = a2 − a1.

So the left side of the iff is equivalent to the solution in integers x, y of an equation of
the form ax + by = c. We know that this is solvable exactly when (a, b)|c. So we have:

⇔ (m1,m2)|(a2 − a1)
⇔ a1 ≡ a2 (mod (m1,m2)).

6. (Niven 2.3.25) Prove that the number of integers 1 ≤ n ≤ mk that satisfy (n, m) = 1 is
kφ(m).

With k = 1, this is just exactly the definition of the φ function. Now lets assume that
the equation holds for some k, and try to prove it for k + 1.

The number of integers 1 ≤ n ≤ m(k + 1) that satisfy (n, m) = 1 is the sum of the
following:

#{1 ≤ n ≤ mk | (n, m) = 1}+ #{mk + 1 ≤ n ≤ m(k + 1) | (n, m) = 1}.

By our inductive hypothesis, the first summand is kφ(m). Now to compute the second
summand. For any n such that mk + 1 ≤ n ≤ m(k + 1), we have that (n, m) =



(n − mk, m), since any common factor of n and m must divide n − mk, and any
common factor of n−mk and m must divide n−mk + mk = n. Therefore,

n ∈ {mk + 1 ≤ n ≤ m(k + 1) | (n, m) = 1} ⇔ n−mk ∈ {1 ≤ n ≤ m | (n, m) = 1}

Since the size of the right set is by definition φ(m), so is the size of the left set. Therefore,
the above sum is kφ(m) + φ(m) = (k + 1)φ(m), and the inductive step is complete!

7. (Niven 2.3.26) Prove that φ(nm) = nφ(m) if every prime divisor of n also divides m.

By definition,
φ(nm) = #{1 ≤ t ≤ nm | (t, nm) = 1}.

Now, saying (t, nm) = 1 is the same as saying t and nm share no prime divisors. But
every prime dividing n also divides m, so the set of primes dividing nm is the exact set
of primes that divide m. Therefore, (t, nm) = 1⇔ (t, m) = 1. So we get

φ(nm) = #{1 ≤ t ≤ nm | (t, m) = 1} = nφ(m),

where the last equality is known from the previous problem.

8. (Niven 4.2.4) Find the smallest m for which there exists another n 6= m with σ(m) =
σ(n).

This is a problem of simple computation:
n σ(n)
1 1
2 3
3 4
4 7
5 6
6 12
7 8
8 15
9 13

10 18
11 12

So six is the least number such that there exists another integer with the same sum of
divisors (clearly no integer greater than 11 can have a sigma that is less than eight).

9. (Niven 4.2.5) Prove that ∏
d|n

d = nd(n)/2.

Consider the square of the left side of the equation. We can shuffle this product as
follows: ∏

d|n

d

2

=

(∏
de=n

d

)(∏
de=n

e

)
=
∏

de=n

de =
∏

de=n

n =
∏
d|n

n = nd(n).

Since the square of the left side equals the square of the right, and they are both
obviously positive, the sides are equal.



10. (Niven 4.2.9) Suppose that f(n) and g(n) are multiplicative.

(a) Prove that F (n) := f(n)g(n) is also multiplicative.
Let a, b ∈ Z be such that (a, b) = 1. Then we have that

F (ab) = f(ab)g(ab) = (f(a)f(b))(g(a)g(b)) = (f(a)g(a))(f(b)g(b)) = F (a)F (b).

(b) If g(n) 6= 0 for all n, prove that G(n) := f(n)/g(n) is multiplicative.
Once again, we assume a and b are coprime. Then

G(ab) =
f(ab)
g(ab)

=
f(a)f(b)
g(a)g(b)

=
f(a)
g(a)

· f(b)
g(b)

= G(a)G(b).

We note that all fractions are well defined since g(n) 6= 0 for all n ∈ Z.

11. (Niven 4.2.12) Prove that ω(n) = #{d | n} is odd iff n is a square.

Solution 1. Consider the set of divisors of n. Every element of this set pairs with
another unique element of the set by the map d ←− n

d . The order of the pair doesn’t
matter. That is, if x −→ y then y −→ x, because if we have x −→ y −→ z, then
xy = n = yz so x = z. So this relation pairs the divisors of n, and since all the divisors
are paired uniquely, the parity of the number of elements in the set is equal to the
parity of the number of elements that are mapped to themselves. So say there is some
x −→ x. This implies that

x =
n

x
=⇒ x2 = n.

So clearly, the only time there is such an element, it is the unique square root of n.
Thus ω(n) is odd exactly when n has an integral square root, that is, n is a square.

Solution 2. Recall the divisor formula

ω(n) = ω(pa1
1 · · · p

ar
r ) = (1 + a1) · · · (1 + ar).

This product is odd if and only if each term is odd, which means each ai is even. But
this means that n = m2, with m = p

a1/2
1 · · · par/2

r , which is guaranteed to be an integer
due to the condition on the ais.

12. (Niven 4.2.16 and 4.2.19) A positive integer n is a perfect number if σ(n) = 2n (i.e., n
is the sum of its proper divisors; for example, 6 = 1 + 2 + 3 is perfect). Prove that if
2m − 1 = p is prime, then 2m−1p is perfect.

So we have to calculate σ(2m−1p). We can certainly write out the divisors of this
number, since we have its prime factorization. So

σ(2m−1p) = 1 + 2 + 22 + · · ·+ 2m−1 + p + 2p + 22p + · · ·+ 2m−1p

= 1 + p + 2 + 2p + 22 + 22p + · · ·+ 2m−1 + 2m−1p

= (1 + p)(1 + 2 + 22 + · · ·+ 2m−1) = (1 + p)(2m − 1)

= (1 + (2m − 1))(2m − 1) = 2m(2m − 1) = 2(2m−1p).

So indeed, we have the σ(n) = 2n for n of this form, and thus it is a perfect number.



(Bonus) Prove that every even perfect number has this form.

Remark: It is widely believed that there are no odd perfect numbers, although this is still
an open conjecture!

13. (Niven 4.2.1) Find n such that µ(n) + µ(n + 1) + µ(n + 2) = 3.

Since µ takes only the values 0,±1, it is clear that we need three consecutive integers
with mu equalling positive one. For this, we need to avoid prime numbers, with a bit
of checking the smallest such example is

µ(33) + µ(34) + µ(35) = µ(3 · 11) + µ(2 · 17) + µ(5 · 7) = 1 + 1 + 1 = 3.

14. (Niven 4.2.2) Prove that µ(n)µ(n + 1)µ(n + 2)µ(n + 3) = 0 for all n.

Consider the four numbers n, n+1, n+2, n+3 mod 4. One of them must be congruent to
zero mod 4. But this implies that four divides in, and so it is not squarefree. Therefore
the µ of that number is zero, and so the product has one factor equal to zero. Thus the
entire product is zero, so we are done.

(Bonus) (a) Prove that if f and g are multiplicative, then

F (n) :=
∑
d|n

f(d)g(n/d)

is multiplicative.

(b) Prove that if
F (n) =

∑
d | nf(d),

then f(n) is also multiplicative.

(c) Define

F (n) :=

{
1 if n is square,
0 otherwise.

Use Möbius inversion to find f(n) such that

F (n) =
∑
d|n

f(d).

Prove that f is multiplicative and find an explicit formula for f(n).


