
18.781 Problem Set 5 - Fall 2008
Due Tuesday, Oct. 14 at 1:00

1. Create your own public-key cryptosystem by picking two primes p1, p2 (they don’t need
to be large!), setting n = p1p2, and picking an exponent (d, φ(n)) = 1. Illustrate the
encryption and decryption procedure by picking a message m < n.

Let’s take the primes 179 and 211. Then n = 37769 and φ(n) = 178 · 210 = 37380. If
we choose d = 29, then we can calculate the inverse of d mod φ(n) to be 1289. Then
we find that for the message 14, we have the encryption 1429 ≡ 32057 (mod 37769). So
our encrypted message is 32057. To decrypt this, we raise it to the 1289, and get back
14.

2. (Niven 2.5.3) If you are able to factor n = p1p2, then it is easy to calculate φ(n) =
(p1 − 1)(p2 − 1). Show that this also works in reverse: If you are given n = p1p2 and
the value of φ = (p1 − 1)(p2 − 1), solve for p1 and p2.

The clever method for solving this is to note that the quadratic polynomial with zeroes
p1, p2 is

f(x) = (x− p1)(x− p2) = x2 − (p1 + p2)x + p1p2 = x2 − (n− φ(n) + 1)x + n.

Now we just apply the quadratic formula to find the zeroes in terms of the coefficients:

p1, p2 =
n− φ(n) + 1±

√
(n− φ(n) + 1)2 − 4n

2
.

3. (Niven 2.5.5) If m is not squarefree, show that there exist a1, a2 such that a1 6≡ a2

(mod m), but ak
1 ≡ ak

2 (mod m) for k ≥ 2.

Since m is not squarefree, we can find a p with p2|m. Then let a1 = 0 and a2 = m
p .

Then since 0 < a2 < m, a1 6≡ a2 (mod m). But the square of each is congruent to zero,
since

a2
2 =

m2

p2
= m · m

p2
≡ 0 (mod m).

So every power 2 or greater for each is zero, so they are all congruent.

4. (Niven 2.8.2) Find a primitive root of 23.

We check the smallest residues.

211 ≡ 1 (mod 23),

311 ≡ 1 (mod 23),

511 ≡ −1 (mod 23).

So the order of 5, that is, the smallest power that gives 1, is not 11. It is also not 2,
since 52 = 25 ≡ 2 (mod 23). We know the order must divide 22 by Fermat’s theorem,
so this only leaves 22, and 5 is a primitive root.



5. (Niven 2.8.3) How many primitive roots does 13 have?

Suppose we had a primitive root, g. Then the first 12 powers of g give the 12 nonzero
residues modulo 13, so every primitive root must be expressible as a power of g. So
for what i is gi a primitive root modulo 13? Well, we need the first power of gi that is
equivalent to 1 to be the 12th. This means that

(gi is a primitive root) ⇐⇒
[
(gi)k ≡ 1 (mod 13) ⇔ 12|k

]
.

Now, since (gi)k = gik ≡ 1 exactly when 12|(ik), we need 12|(ik) ⇔ 12|k. This is just
requiring (12, i) = 1. So the powers of g that are primitive roots are the powers coprime
to 12, or g, g5, g7, and g11. So 13 has four primitive roots. Since two is a primitive root,
we get that the complete list of primitive roots is

2, 32 ≡ 6, 128 ≡ 11, and 2048 ≡ 7.

Note that generalizing this argument gives the beautiful and goofy formula for the
number of primitive roots mod n, assuming at least one exists: φ(φ(n)).

6. (Niven 2.8.9 & 2.8.15)

(a) Show that 38 ≡ −1 (mod 17). Explain why this implies that 3 is a primitive root
modulo 17.

38 ≡ 94 ≡ 812 ≡ 132 ≡ 169 ≡ −1 (mod 17).

Now, suppose 3 was not a primitive root modulo 17. Then 3 has order less than
φ(17) = 16. We also know that 316 ≡ 1 (mod 17) by Fermat, so the order of 3
must divide 16. But the only divisors of 16 are smaller powers of 2, and they all
divide 8. So if 3 is not a primitive root, its order must divide 8, and so 38 must
give 1 mod 17. Since we just showed that 38 6≡ 1, 3 must be a primitive root.

(b) Prove that if a has order h modulo p, and h is even, then a
h
2 ≡ −1 (mod p).

We are given that the order of a modulo p is h, and 2|h. So let h
2 = k. Then we

have 1 ≤ k < h and
(ak)2 ≡ ah ≡ 1 (mod p).

From a previous problem, we know the only square roots of 1 are ±1, in a prime
modulus. The inequality above gives that ak cannot be 1, since k is positive and
less than the order of a. This only leaves the value −1, so

a
k
2 ≡ −1 (mod p).

(Bonus) Prove that if p is prime, then

1k + 2k + · · ·+ (p− 1)k ≡

{
0 (mod p) if (p− 1) - k,

−1 (mod p) if (p− 1) | k.


