18.781 Problem Set 6 - Fall 2008

Due Tuesday, Oct. 21 at 1:00

- 1. (Niven 2.8.7) If $p \ge 3$ is prime, how many solutions are there to $x^{p-1} \equiv 1 \pmod{p}$? How many solutions are there to $x^{p-1} \equiv 2 \pmod{p}$?
- 2. (Niven 2.8.8) Determine how many solutions there are to:

(a) $x^{12} \equiv 16 \pmod{17}$ (b) $x^{48} \equiv 9 \pmod{17}$ (c) $x^{20} \equiv 13 \pmod{17}$ (d) $x^{18} \equiv 11 \pmod{23}$.

- 3. (Niven 2.8.13 & 2.8.32) Show that $\{1^k, 2^k, \ldots, (p-1)^k\}$ is a reduced residue system modulo p iff (k, p-1) = 1.
- (Bonus) Suppose that $\{r_1, r_2, \ldots, r_{\phi(m)}\}$ is a reduced residue system modulo m. Show that $\{r_1^k, r_2^k, \ldots, r_{\phi(m)}^k\}$ is a reduced residue system if and only if $(k, \phi(m)) = 1$.
 - 4. (Niven 2.8.14) Suppose that $e_p(a) = h$ and that \overline{a} satisfies $a \overline{a} \equiv 1 \pmod{p}$. Show that $e_p(\overline{a}) = h$ as well. Furthermore, if $a \equiv g^i \pmod{p}$ for some primitive root g, show that $\overline{a} \equiv g^{p-1-i} \pmod{p}$.
 - 5. (Niven 2.8.18) Show that if g and g' are both primitive roots modulo an odd prime p, then gg' is not a primitive root. (*Hint: Use the fact that* p 1 *is even.*)
 - 6. Recall from PSet 5 that g = 5 is a primitive root modulo 23. Which number(s) of the form 5 + 23k (with $0 \le k \le 22$) is not a primitive root modulo 23^2 ?
 - 7. Find a primitive root for the following moduli:
 - (a) $m = 7^4$ (b) $m = 11^3$ (c) $m = 2 \cdot 13^2$.
 - 8. Consider the sequence 9,99,999 (= $3^3 \cdot 37$),9999 (= $3^2 \cdot 11 \cdot 101$),.... Prove that every prime $p \neq 2, 5$ appears as a factor of some term in this list. Hint: Note that $10^n - 1 = 99 \dots 9$, with length n.
 - 9. Consider the decimal expansions

$1/7 = 0.\overline{142857}$	$1/11 = 0.\overline{09}$	$1/13 = 0.\overline{076923}$
$2/7 = 0.\overline{285714}$	$2/11 = 0.\overline{18}$	$2/13 = 0.\overline{153846}$
$3/7 = 0.\overline{428571}$	$3/11 = 0.\overline{27}$	$3/13 = 0.\overline{230769}.$

Prove that for a prime $p \neq 2, 5$, the fraction a/p for $1 \leq a \leq p-1$ is repeating with period length $e_p(10)$.

10. (Niven 1.4.1 & 1.4.2) Use the binomial theorem to show that

(a)
$$\sum_{k=0}^{n} \binom{n}{k} = 2^{n}$$
 (b) $\sum_{k=0}^{n} (-1)^{k} \binom{n}{k} = 0.$

11. (Niven 2.6.3) Solve $x^3 + x + 57 \equiv 0 \pmod{5^3}$.