
18.781 Solutions to Problem Set 6 - Fall 2008
Due Tuesday, Oct. 21 at 1:00

1. (Niven 2.8.7) If p ≥ 3 is prime, how many solutions are there to xp−1 ≡ 1 (mod p)?
How many solutions are there to xp−1 ≡ 2 (mod p)?

The first equivalence is known to hold for all a 6≡ 0 (mod p). This is an immediate
consequence of Fermat’s little theorem, by multiplying by the inverse of a, which exists
mod p as long as a 6≡ 0. So there are p− 1 solutions to xp−1 ≡ 1 (mod p).

The second equivalence, on the other hand, has no solutions. This is because by the
above reasoning, every integer raised to the p−1 is either congruent to 1, for all coprime
integers, or it is congruent to 0, if the integer was itself zero. Since we are assuming
that p ≥ 3, p 6= 2 so 2 is neither 0 nor 1, so the equivalence has no solutions.

2. (Niven 2.8.8) Determine how many solutions there are to:

(a) x12 ≡ 16 (mod 17)

(b) x48 ≡ 9 (mod 17)

(c) x20 ≡ 13 (mod 17)

(d) x18 ≡ 11 (mod 23).

(a) Working in the modulus 17, the nonzero residues are generated by some element,
g, of order 16. So we want to find the powers of g, say gk, such that(

gi
)12 ≡ 16 (mod 17).

Since e17(g) = 16, g8 ≡ −1 ≡ 16 mod 17. So we want to find the i with g12i ≡ g8,
which is only true if e17(g)|12i − 8, or 16|12i − 8. This is a solvable congruence
mod 16, which is satisfied for i ≡ 2, 6, 10, 14 (mod 16), so there are 4 solutions to

the congruence.

(b) Here, we are working in the same modulus, but we notice that 48 = 3 · 16, so
x48 ≡ (x16)3 ≡ 1 (mod 17). So there are no solutions to this equivalence.

(c) Using the notation from the first part, we note that

132 ≡ (−4)2 ≡ 16 ≡ −1 ≡ g8 (mod 17).

So this implies that either g4 ≡ 13 or g12 ≡ 13. Since substituting g−1 for g
switches these two options, we can assume without loss of generality that our
original choice of g has g4 ≡ 13. So we want to find the i (mod 16) with(

gi
)2 0 ≡ g4 (mod 17).

Since the powers of g operate additively mod 16, this is equivalent to finding the
i with

20i ≡ 4 (mod 16).

We can easily solve this, we get the solutions i ≡ 1, 5, 9, 13 (mod 16). So there are
4 solutions.



(d) By taking powers of 11, we can find that 112 ≡ 6 (mod 23) and 1111 ≡ −1
(mod 23). Since we know the order of 11 must divide p−1 = 22, these congruences
imply that 11 is a primitive root for 23. So we can take g = 11, and we want to
find an i such that

(gi)18 ≡ g (mod 23)

Now, we convert this to a congruence in the exponents mod 22:

18i ≡ 1 (mod 22).

We can immediately see that this has no solutions, because the greatest common
divisor of 18 and 22 is 2, which doesn’t divide 1. So the fourth congruence has no
solutions.

3. (Niven 2.8.13 & 2.8.32) Show that {1k, 2k, . . . , (p − 1)k} is a reduced residue system
modulo p iff (k, p− 1) = 1.

We can solve this problem similarly to the way the last problem was solved, by using
the power of a primitive root mod p. So let g be a primitive root for p. Then we want
to know for what k is the list of kth powers a reduced residue system modulo p. This
is just asking for what k does xk ≡ b have a solution for every b 6≡ 0.

So let’s write b as gi, and we want to determine if we can always find some x which we
can write as gj such that

(
gj

)k ≡ gi (mod p). Exactly as above, we can rewrite this as
a congruence on the exponents mod (p− 1):

jk ≡ i (mod (p− 1)).

So we want to know, for what k is this congruence always solvable for j? And from
our knowledge of modular arithmetic, we know that there is a solution exactly when
(k, p− 1) = 1, because then k is invertible mod p.

(Bonus) Suppose that {r1, r2, . . . , rφ(m)} is a reduced residue system modulo m. Show that
{rk

1 , rk
2 , . . . , rk

φ(m)} is a reduced residue system if and only if (k, φ(m)) = 1.

4. (Niven 2.8.14) Suppose that ep(a) = h and that a satisfies a a ≡ 1 (mod p). Show that
ep(a) = h as well. Furthermore, if a ≡ gi (mod p) for some primitive root g, show that
a ≡ gp−1−i (mod p).

The first statement comes from the following relation:

1 ≡ a a ≡ (a a)k ≡ akak (mod p).

Therefore ak ≡ 1 exactly when ak ≡ 1, so they have equal orders.

Now we let a ≡ gi (mod p). Since we know g is a primitive root, we have that gj ≡ a
(mod p) for some 1 ≤ j ≤ p− 1. But

1 ≡ a a ≡ gigj ≡ gi+j (mod p).

Since the order of g is p− 1, we have that (p− 1)|(i + j), and from the inequalities of i
and j, we have that i + j = p− 1, or j = p− 1− i, and we are done.



5. (Niven 2.8.18) Show that if g and g′ are both primitive roots modulo an odd prime p,
then gg′ is not a primitive root. (Hint: Use the fact that p− 1 is even.)

We know that p− 1 is even, and it is the order of both g and g′. So this implies that

g
p−1
2 ≡ g′

p−1
2 ≡ −1 (mod p).

The reason this follows is we know these two powers of generators cannot be 1, by their
orders, but must square to 1, so we get that they must be −1. So then we have that

(gg′)
p−1
2 ≡

(
g

p−1
2

) (
g′

p−1
2

)
≡ −1 · −1 ≡ 1.

Therefore the order of gg′ is at most p−1
2 < p− 1, so gg′ is not a primitive root.

6. Recall from PSet 5 that g = 5 is a primitive root modulo 23. Which number(s) of the
form 5 + 23k (with 0 ≤ k ≤ 22) is not a primitive root modulo 232?

We are given 5 as a primitive root of 23. Then from work in class, we know numbers

of the form 5 + 23k are primitive roots of 232 = 529 unless k ≡ 523 − 5
23

(mod 23). We

calculate that 523 ≡ 28 (mod 529). This implies that 5 + 23k is not a primitive root
modulo 529, for 0 ≤ k ≤ 22 only when

k =
28− 5

23
= 1.

7. Find a primitive root for the following moduli:

(a) m = 74

(b) m = 113

(c) m = 2 · 132.

(a) By inspection, 3 is a primitive root for 7. Then by the formula above, the only
number of the form 3 + 7k that is a primitive root for 72 = 49 is when k = 4, so
in particular 3 is still a primitive root for 49. Then we move up to 74 = 2401.
Once you get to the third power of an odd prime modulus, any number that was a
primitive root for p2 will still be a primitive root for pi for i > 2. This is because
we know that the unit group has a primitive root, and then number of such roots
is

φ(φ(pi)) = φ(pi−1(p− 1)) = φ(pi−1)φ(p− 1) = pi−2(p− 1)φ(p− 1)

= p · pi−2(p− 1)φ(p− 1) = p · φ(φ(pi−1)).

So the number of primitive roots is multiplied by p as we change the mod from
pi−1 to pi, so every primitive root must stay a primitive root. Therefore 3 is a
primitive root for 74.

(b) For 11, we find that 2 is a primitive root. Then moving up to 112 = 121, the k for
which 2 + 11k is not a primitive root is

k ≡ 211 − 2
11

≡ 186 ≡ 10 (mod 11).

So in particular, 2 remains a primitive root for 112. Then by the logic above it is
also a primitive root for 113.



(c) For a number to be a primitive root mod 2 · 132, it must be a primitive root for
132 and also be odd. Then its order mod 132 is φ(132), so this is a lower bound
for its order mod 2 · 132, but since φ(2 · 132) = φ(132), this implies it is a primitive
root for 2 · 132. So we find a primitive root for 132.
The first step is to find a root for 13, 2 suffices upon inspection. So then we move
to 132 = 169. We calculate the k for which 2 + 13k fails to be a primitive root, it
is

k ≡ 213 − 2
13

≡ 6 (mod 13).

So in particular, 2 is still a primitive root mod 169. But we want an odd primitive
root. This is easily solved: we can just take 2 + 169 = 171. Then this is an odd
primitive root mod 169, so it is a primitive root mod 2 · 169 = 338. So 171 is our
answer.

8. Consider the sequence 9, 99, 999 (= 33 · 37), 9999 (= 32 · 11 · 101), . . . . Prove that every
prime p 6= 2, 5 appears as a factor of some term in this list.
Hint: Note that 10n − 1 = 99 . . . 9, with length n.

The sequence is written in a rather awkward way, we rewrite the terms using the hint
as an = 10n − 1. So given a prime p, we want to show that for some n, p|an. Well,

p|an ⇔ p|(10n − 1) ⇔ 10n ≡ 1 (mod p).

So we have reduced it to showing that some power of 10 is congruent to 1 mod p. Since
p is assumed to not divide 10, 10 must have an order mod p, and this power of 10 will
be congruent to 1 mod p. So we are done.

9. Consider the decimal expansions

1/7 = 0.142857
2/7 = 0.285714
3/7 = 0.428571

1/11 = 0.09
2/11 = 0.18
3/11 = 0.27

1/13 = 0.076923
2/13 = 0.153846
3/13 = 0.230769.

Prove that for a prime p 6= 2, 5, the fraction a/p for 1 ≤ a ≤ p − 1 is repeating with
period length ep(10).

The trick to this problem is to delve into the algorithm that generates the decimal ex-
pansions of fractions, namely, long division. We can rewrite the division that calculates
the decimal expansion of 1

7 in the following way:

1 = 7 · 0 + 1
10 = 7 · 1 + 3
30 = 7 · 4 + 2
20 = 7 · 2 + 6
60 = 7 · 8 + 4
40 = 7 · 5 + 5
50 = 7 · 7 + 1
10 = 7 · 1 + 3



So we begin by performing our fraction division in the integers, and the quotient is the
integer part of the decimal (in the above case, this is 0). Then, from each step, to get
the next decimal place, we take the previous remainder, multiply it by 10, and then
divide by our denominator, 7. The quotient is the next decimal place, and we get a
new remainder.

The process repeats as soon as our original remainder is achieved a second time. But if
we look at the above equations mod 7, the 7 · q part all drops out, and we just have the
next remainder in the algorithm is congruent to 10 times the previous remainder, mod
7. So, by a quick induction argument, the nth remainder is congruent to 10n times the
“zeroth” remainder. So the remainder repeats exactly when 10n ≡ 1 (mod 7), so for
n = e7(10). This argument is easily generalizable, so the length of the repeating part
of a decimal with denominator p is always ep(10).

10. (Niven 1.4.1 & 1.4.2) Use the binomial theorem to show that

(a)
n∑

k=0

(
n

k

)
= 2n (b)

n∑
k=0

(−1)k

(
n

k

)
= 0.

(a) Well, the binomial theorem states that, for integers x, y, n,

(x + y)n =
n∑

k=0

(
n

k

)
xn−kyk.

So setting x = y = 1, we obtain

(1 + 1)n =
n∑

k=0

(
n

k

)
1n−k1k =

n∑
k=0

(
n

k

)
.

But the left hand side is obviously just 2n.
(b) Here we can set x = 1, y = −1. We get

(1 +−1)n =
n∑

k=0

(
n

k

)
1n−k(−1)k =

n∑
k=0

(−1)k

(
n

k

)
.

Once again, the left hand side is easily computable, this time it is 0.

11. (Niven 2.7.3) Solve x3 + x + 57 ≡ 0 (mod 53).

We solve this problem by solving mod 5 and then mod 52. First, mod 5 we only have to
seach for a solution to x3 + x + 2 ≡ 0 (mod 5) by checking the value of the equation at
0, 1, 2, 3, and 4. We find that the only solution is 4, or −1. Then a solution mod 52 = 25
must be of the form −1 + 5k. So once again we only have to check if x3 + x + 7 ≡ 0
(mod 25) for five numbers, say −6,−1, 4, 9 and 14. It holds for 4, and none of the
others. So now we only need to check 4, 29, 54, 79, 104 for the polynomial mod 125.
But in fact we immediately find that 4 again is a solution. So we can then factor the
cubic mod 125:

x3 + x + 57 ≡ (x− 4)(x2 + 4x + 17) (mod 125).

Then we check and find that the quadratic factor has no solutions mod 5, so the original
polynomial has no solutions mod 125 other than 4.


