18.781 Problem Set 7 - Fall 2008

Due Tuesday, Oct. 28 at 1:00

Throughout this assignment, f(x) always denotes a polynomial with integer coefficients.

- 1. (a) Show that $e_{32}(3) = 8$, and write down a list of powers demonstrating that any odd number n satisfies $n \equiv \pm 3^j \pmod{32}$ for some j.
 - (b) Determine the order of 9 modulo 64.

(Bonus) Prove that $e_{2^k}(g) = 2^{k-2}$ if and only if $g \equiv 3 \text{ or } 5 \pmod{8}$.

- 2. (Niven 2.7.1) Solve the congruence $x^2 + x + 7 \equiv 0 \pmod{81}$.
- 3. (Niven 2.7.4) Solve the congruence $x^2 + 5x + 24 \equiv 0 \pmod{36}$.
- 4. (Niven 2.7.6) Solve the congruence $x^3 + x^2 4 \equiv 0 \pmod{343}$.
- 5. (Niven 2.7.9) This problem explains how to lift solutions in the nonsingular case more quickly (using successive squaring).
 - (a) Suppose that $f(a) \equiv 0 \pmod{p^j}$ and $f'(a) \not\equiv 0 \pmod{p}$. Let x be an integer such that $f'(a)x \equiv 1 \pmod{p^j}$, and set b := a f(a)x. Prove that $f(b) \equiv 0 \pmod{p^{2j}}$. **Remark.** The key difference from before is that x is now the inverse of $f'(a) \mod p^j$ rather than just mod p.
 - (b) If $f(a_0) \equiv 0 \pmod{p}$, explain how part (a) lets us find a_1, a_2, \ldots such that $f(a_i) \equiv 0 \pmod{p^{2^i}}$.
 - (c) Solve $x^3 + x^2 + 4 \equiv 0 \pmod{3^8}$.
- 6. Suppose that $f(a) \equiv 0 \pmod{p}$. Is it possible that $f(a) \equiv 0 \pmod{p^j}$ for all j (i.e., the solution can be lifted unchanged)?
- 7. (Niven 2.9.1abd) Rewrite the following congruences in the form $(x r)^2 \equiv k \pmod{p}$.
 - (a) $4x^2 + 2x + 1 \equiv 0 \pmod{5}$ (b) $3x^2 - x + 5 \equiv 0 \pmod{7}$ (c) $x^2 + x - 1 \equiv 0 \pmod{13}$.
- 8. (Niven 2.9.2 & 2.9.3) Suppose $f(x) = ax^2 + bx + c$, with discriminant $D = b^2 4ac$. Let p be an odd prime.
 - (a) If $p \nmid a$ and $p \mid D$, show that $f(x) \equiv 0 \pmod{p}$ has one solution x_0 , and that $f'(x_0) \equiv 0 \pmod{p}$.
 - (b) If $p \nmid a$ and $p \nmid D$, show that $f(x) \equiv 0 \pmod{p}$ has zero or two solutions, and that $f'(x') \not\equiv 0 \pmod{p}$ for a solution x'.

(Bonus) Prove that $f(x) \equiv 0 \pmod{p^2}$ has 0, 1, 2, p, or p^2 solutions.

- 9. (Completing the cube)
 - (a) Suppose that $f(x) = ax^3 + bx^2 + cx + d$ and that $p \ge 5$. Prove that the congruence $f(x) \equiv 0 \pmod{p}$ is equivalent to some congruence $g(x) \equiv 0 \pmod{p}$ where $g(x) = Ax^3 + Cx + D$.

- (b) Solve $x^3 + 6x^2 6x 18 \equiv 0 \pmod{23}$.
- 10. (Niven 3.2.5)
 - (a) Prove that the quadratic residues mod 11 are 1, 3, 4, 5, and 9.
 - (b) Find the solutions to $x^2 \equiv a \pmod{11}$ for a = 1, 3, 4, 5, 9.
 - (c) Find the solutions to $x^2 \equiv a \pmod{121}$ for a = 1, 3, 4, 5, 9.
- 11. (Niven 3.2.6a & 3.2.11)
 - (a) Write down the quadratic residues for p = 7, 13, 17, and 29.
 - (b) Prove that if p is an odd prime, then there are equally many quadratic residues and nonresidues mod p.
- (Bonus) Suppose that $q \equiv 1 \pmod{4}$ is prime, and that p = 2q + 1 is also prime. Prove that 2 is a primitive root modulo p.

Remark. Such a p is known as a "Sophie Germain" prime; it is believed that there are infinitely many, but this is not known.