
18.781 Problem Set 7 - Fall 2008
Due Tuesday, Oct. 28 at 1:00

Throughout this assignment, f(x) always denotes a polynomial with integer coefficients.

1. (a) Show that e32(3) = 8, and write down a list of powers demonstrating that any odd
number n satisfies n ≡ ±3j (mod 32) for some j.
The successive powers of 3 mod 32 are

3, 9, 27, 17, 19, 25, 11, 1.

This shows both that e32(3) = 8 and, since 31 is not listed and thus no powers
of 3 are additive inverses mod 32, all 16 odd congruence classes mod 32 can be
written as either one of the above numbers or its negative.

(b) Determine the order of 9 modulo 64.

By the above list of powers, 9 has order 4 modulo 32. So lifting to 64, 9 has order
divisible by 4. In fact, 94 ≡ 33 (mod 64), and since 332 ≡ 1 (mod 64), 9 has order
8 modulo 64.

(Bonus) Prove that e2k(g) = 2k−2 if and only if g ≡ 3 or 5 (mod 8).

2. (Niven 2.7.1) Solve the congruence x2 + x + 7 ≡ 0 (mod 81).

We solve this congruence by solving modulo successive powers of 3. For the modulus
3, we just have x2 + x + 1 ≡ 0 which has the double root 1. Because this is a double
root, it is a singular root, so all possible lifts of the number give the same number mod
9, so either they are all roots or none is. Then mod 9 we have to check 1, which clearly
satisfies the equation, so they all (1, 4, 7) satisfy the equation. So now we lift to 27 and
get the solutions that we need to check are 1, 4, 7. We find that 4 satisfies the equation
but not the other two, so 4, 13, 22 are all solutions (once again, using singularity) to
the equation mod 27. Finally, lifting to 81 we get that the equation must be checked
at 4, 13, and 22. Since none of these satisfy the equation, it has no solutions mod 81.

3. (Niven 2.7.4) Solve the congruence x2 + 5x + 24 ≡ 0 (mod 36).

Here we see that our modulus factors as 36 = 22 · 32. We solve each prime power
separately and then combine them using CRT. Mod 4 is small enough that we can just
check it by hand, the solutions are 0 and 3. For the second prime power, mod 9 we
can first get that 0 and 1 are solutions mod 3. Then by the nonsingularity, each of
these lifts uniquely to mod 9, we can quickly see that 0 lifts to 6 and 1 lifts to 7, so our
solutions are 6 and 7 mod 9.

Now we combine our solutions mod 4 and mod 9 into solutions mod 36 by taking pairs
and using the Chinese Remainder Theorem.

(mod 4) (mod 9) (mod 36)
x ≡ 0 x ≡ 6 ⇒ x ≡ 24
x ≡ 0 x ≡ 7 ⇒ x ≡ 16
x ≡ 3 x ≡ 6 ⇒ x ≡ 15
x ≡ 3 x ≡ 7 ⇒ x ≡ 7.



So the solutions mod 36 are 7, 15, 16, and 24.

4. (Niven 2.7.6) Solve the congruence x3 + x2 − 4 ≡ 0 (mod 343).

This equation is easiest; when we begin by checking the seven congruences classes mod
7, we get no solutions. So there cannot be any solutions mod 73 = 343.

5. (Niven 2.7.9) This problem explains how to lift solutions in the nonsingular case more
quickly (using successive squaring).

(a) Suppose that f(a) ≡ 0 (mod pj) and f ′(a) 6≡ 0 (mod p). Let x be an integer such
that f ′(a)x ≡ 1 (mod pj), and set b := a− f(a)x. Prove that f(b) ≡ 0 (mod p2j).
Remark. The key difference from before is that x is now the inverse of f ′(a) mod pj

rather than just mod p.
So we can lift our solutions more quickly here. To prove the result, we use our
Taylor expansion of the polynomial f at a. We know that

f(a + tpj) = f(a) + tpjf ′(a) + t2p2jf ′′(a)/2! + · · · ≡ f(a) + tpjf ′(a) (mod p2j).

So to lift a to the modulus p2j , we want to find t so that

0 ≡ f(a) + tpjf ′(a) (mod p2j),

or, we want

t ≡ −f(a)
pj

· x (mod pj),

where x is the inverse of f ′(a) mod pj , as it is defined above. Note that we know
the fraction in the congruence makes sense because we know a is a root mod pj ,
so we can divide this in the integers. So we have that this t gives us the proper
lifted root, so plugging this t in to a + tpj , we get that a− f(a)x is our lifted root
mod p2j . Since this is the exact form of b, we are done.

(b) If f(a0) ≡ 0 (mod p), explain how part (a) lets us find a1, a2, . . . such that f(ai) ≡
0 (mod p2i

).
This is just Newton’s method applied to modular arithmetic! Given a polynomial
f with a nonsingular root a mod p, we know f ′(a) is coprime to p, and thus is
invertible in every modulus that is a power of p. So, from some ai the solution
mod p2i

, let ai+1 = ai − xif(ai) for xi the inverse of f ′(a) mod p2i
, and by the

above proof this ai+1 is a solution mod p2i+1
.

(c) Solve x3 + x2 + 4 ≡ 0 (mod 38).
We are clearly supposed to use the above method with this equivalence. First
we solve it mod 3 to find that it has the unique solution 1, and this solution is
nonsingular, since f ′(x) = 3x2 + 2x. So we know this unique solution will lift to a
unique solution for all powers of 3.
Now we begin to use the method above with a0 = 1. f ′(a0) = 5 which has inverse
2 mod 3, so we know a1 = a0 − f(a0) · x0 = 1 − 6 · 2 = −11 ≡ 7 (mod 9). So
a1 = 7. Now looking mod 9, the inverse of f ′(7) = 161 is 8, so x1 = 8. Then

a2 = a1 − f(a1) · x1 = 7− 396 · 8 ≡ 79 (mod 81).



Calculating x2, we get that the inverse of f ′(79) = 18881 ≡ 8 (mod 81) is 71. So

a3 = a2 − f(a2)x2 = 79− 499284 · 71 = −35449085 ≡ 6559 (mod 6561 = 38).

So we are done. But note that this can be solved much more easily by noting that
there is a unique solution for all powers of 3 and then noting that −2 is a solution
in the integers, so is a solution for all powers of 3.

6. Suppose that f(a) ≡ 0 (mod p). Is it possible that f(a) ≡ 0 (mod pj) for all j (i.e.,
the solution can be lifted unchanged)?

If f(a) ≡ 0 (mod pj) for all j, then that means that arbitrarily large powers of p divide
the integer f(a). The only integer that this could possibly hold for is 0, since otherwise
we can find a j for which pj > |f(a)|, and so if f(a) 6= 0, clearly we cannot have pj |f(a).
But if f(a) = 0, then it is true that the solution a lifts for all j, just as the solution −2
lifted in the previous problem.

7. (Niven 2.9.1abd) Rewrite the following congruences in the form (x− r)2 ≡ k (mod p).

(a) 4x2 + 2x + 1 ≡ 0 (mod 5)
(b) 3x2 − x + 5 ≡ 0 (mod 7)

(c) x2 + x− 1 ≡ 0 (mod 13).

(a)
4x2 + 2x + 1 ≡ 4(x + 3x + 4) ≡ 4((x + 4)2 + 3) ≡ 0 (mod 5).

So the congruence is equivalent to (x− 1)2 ≡ 2 (mod 5).

(b)
3x2 − x + 5 ≡ 3(x2 + 2x + 4) ≡ 3((x + 1)2 + 3) ≡ 0 (mod 7).

So we get (x− 6)2 ≡ 4 (mod 7).

(c)
x2 + x− 1 ≡ (x + 7)2 − 11 ≡ 0 (mod 13).

So (x− 6)2 ≡ 11 (mod 13).

8. (Niven 2.9.2 & 2.9.3) Suppose f(x) = ax2 + bx + c, with discriminant D = b2 − 4ac.
Let p be an odd prime.

(a) If p - a and p | D, show that f(x) ≡ 0 (mod p) has one solution x0, and that
f ′(x0) ≡ 0 (mod p).
Here we have that D ≡ 0 (mod p), so we have exactly one square root of D, 0.
Now, since we showed in class that ax2 + bx + c ≡ 0 if and only if (2ax + b)2 ≡ D
(mod p), we thus have that the only solution mod p when 2ax + b ≡ 0, which is
determined uniquely by the inverse of 2a, which exists since p is prime and p - a,
times −b.
For this solution, we find that f ′(x) = 2ax + b ≡ 0 (mod p).

(b) If p - a and p - D, show that f(x) ≡ 0 (mod p) has zero or two solutions, and that
f ′(x′) 6≡ 0 (mod p) for a solution x′.
Here we have to solve (2ax + b)2 ≡ D (mod p) with D 6≡ 0. Here, we know we
have either two square roots, when D is a QR, or zero square roots, when D is



a QNR. In the first case, each square root corresponds to a unique root to the
equation, so we have two solutions, and since we know the square roots are not
zero, we get that f ′(a) = 2ax′ + b 6≡ 0 (mod p) for a solution x′.

(Bonus) Prove that f(x) ≡ 0 (mod p2) has 0, 1, 2, p, or p2 solutions.

9. (Completing the cube)

(a) Suppose that f(x) = ax3 + bx2 + cx+d and that p ≥ 5. Prove that the congruence
f(x) ≡ 0 (mod p) is equivalent to some congruence g(x) ≡ 0 (mod p) where
g(x) = Ax3 + Cx + D.

Here we can complete the cube the same way we completed the square for any odd
prime. First, multiply the equation through by 27a2, which can be done because
3 is invertible, since p ≥ 5. We get

27a3x3 + 27a2bx2 + 27a2cx + 27a2d ≡ 0 (mod p).

Then our leftmost term is a cube, and the next term is the next term of the
binomial expansion of (3ax + b)3. So we get

(3ax + b)3 + (27a2c− 9ab2)x + (27a2d− b3) ≡ 0 (mod p).

Now, we write the other terms in the form (3ax + b) :

(3ax + b)3 + (9ac− 3b2)(3ax + b) + (27a2d− 9abc + 2b3) ≡ 0 (mod p).

So letting y = 3ax + b, we get the equivalent congruence

y3 + (9ac− 3b2)y + (27a2d− 9abc + 2b3) ≡ 0 (mod p).

(b) Solve x3 + 6x2 − 6x− 18 ≡ 0 (mod 23).
So here we carry out the above simplification with a = 1, b = 6, c = −6, and
d = −18 mod 23. So y = 3x + 6 and we get

y3 + (−162)y + (270) ≡ y3 − y + 17 ≡ 0 (mod 23).

This makes the calculation a bit easier, but by plugging in all of the residues mod
23, {−11,−10, . . . , 10, 11}, shows that this has no solution, and so the original
congruence had no solution.

10. (Niven 3.2.5)

(a) Prove that the quadratic residues mod 11 are 1, 3, 4, 5, and 9.
This can be found by squaring the numbers 1 to 11−1

2 = 5 and reducing mod 11.
We get 1, 4, 9, 5, and 3. Rearranged, these are the ones listed.

(b) Find the solutions to x2 ≡ a (mod 11) for a = 1, 3, 4, 5, 9. The solutions for each
of the congruences are just the plus and minus of the number squared to get the
residue. Using our list above, we can see that the answers to the 5 conguences are,
respectively, ±1,±5,±2,±4, and ±3, all mod 11.



(c) Find the solutions to x2 ≡ a (mod 121) for a = 1, 3, 4, 5, 9. The polynomial is
easily seen to be nonsingular in all cases, so every solution lifts to exactly one
solution mod 121.
We can lift a solution x by setting the new solution equal to x+11t, and then the
equivalence a ≡ (x + 11t)2 ≡ x2 + 2 · x · (11t) (mod 121) gives that we can find t
to be

t ≡ a− x2

11
· 1
2x

(mod 11),

where the first fraction is calculated as an integer, since x2 ≡ a (mod 11), and the
second fraction just means multiplying by the inverse of 2x mod 11. Using this
formula, we find the following:
For a = 1, x = ±1, t = 0 so the new solutions are just ±1.
For a = 3, x = ±5, t = ±2 so the new solutions are ±27.
For a = 4, it’s easy to see you’ll get ±2 since they work in the integers.
For a = 5, x = ±4, t = ±4, so the new solutions are ±48.
Finally, for a = 9, you must get ±3, since it holds in the integers.

11. (Niven 3.2.6a & 3.2.11)

(a) Write down the quadratic residues for p = 7, 13, 17, and 29.
From a bit of calculation, we find the quadratic residues in the table below:

p QR’s
7 1,2,4

13 1,3,4,9,10,12
17 1,2,4,8,9,13,15,16
29 1,4,5,6,7,9,13,16,20,22,23,24,25,28

(b) Prove that if p is an odd prime, then there are equally many quadratic residues
and nonresidues mod p.
In class, we saw that for an odd prime, the QR’s are exactly the even powers of
a primitive root. Since there are an equal number of even and odd powers of the
generator, there are an equal number of QR’s and QNR’s.
A second way to prove this is to consider the map of multiplication by a QNR.
We know this map takes QR’s to QNR’s and QNR’s to QR’s. Since this map is a
bijection on the residues mod p (because it is invertible), it shows that the set of
QR’s is equal to the set of QNR’s.

(Bonus) Suppose that q ≡ 1 (mod 4) is prime, and that p = 2q + 1 is also prime. Prove that 2
is a primitive root modulo p.
Remark. Such a p is known as a “Sophie Germain” prime; it is believed that there are
infinitely many, but this is not known.


