
18.781 Problem Set 8 - Fall 2008
Due Tuesday, Nov. 4 at 1:00

1. Evaluate the following Legendre symbols:

(a)
(

85
101

)
(b)

(
29
541

) (c)
(

101
1987

)
.

It is important to check each number for primality and to check each application of
quadratic reciprocity with the two primes’ residues mod 4.

(a)
(

85
101

)
=

(
5

101

) (
17
101

)
=

(
101
5

) (
101
17

)
=

(
1
5

) (
16
17

)
= 1.

(b)
(

29
541

)
=

(
541
29

)
=

(
19
29

)
=

(
29
19

)
=

(
10
19

)
=

(
2
19

) (
5
19

)
= (−1)

192−1
8

(
19
5

)
= −

(
4
5

)
= −1.

(c)
(

101
1987

)
=

(
1987
101

)
=

(
68
101

)
=

(
4

101

) (
17
101

)
= 1 · 1 = 1.

2. (Niven 3.2.4abce) Determine which of the following are solvable (the moduli are all
primes):

(a) x2 ≡ 5 (mod 227)

(b) x2 ≡ 5 (mod 229)

(c) x2 ≡ −5 (mod 227)

(d) x2 ≡ 7 (mod 1009).

First, some relevant Legendre symbol calculations:

(a)
(

5
227

)
=

(
227
5

)
=

(
2
5

)
= −1.

(b)
(

5
229

)
=

(
229
5

)
=

(
4
5

)
= 1.

(c)
(
−5
227

)
=

(
−1
227

) (
5

227

)
= (−1)

227−1
2 · (−1) = (−1)(−1) = 1.

(d)
(

7
1009

)
=

(
1009

7

)
=

(
1
7

)
= 1.

So we have that the first equation is not solvable, but the rest are, by the value of the
associated Legendre symbols.

3. Prove that if p | (n2 − 5) for some integer n, then p ≡ 1 or 4 (mod 5).

We are given p|(n2 − 5) for some n ∈ Z. This gives that n2 ≡ 5 (mod p), so 5 is a
quadratic residue mod p. But then we have, by quadratic reciprociy, that

1 =
(

5
p

)
=

(p

5

)
=

{
1 if p ≡ ±1 (mod 5)
−1 if p ≡ ±2 (mod 5).



So we get that p ≡ 1 or 4 (mod 5). (We actually must assume that p 6= 5 as well)

4. Show that if p ≡ 3 (mod 4), then x = a(p+1)/4 is a solution to x2 ≡ a (mod p).

(Correction:) For this problem, we also need to assume that
(

a

p

)
= 1, since otherwise

we couldn’t possibly find a solution for x2 ≡ a (mod p).

So with that extra assumption, we have that

1 ≡
(

a

p

)
≡ a

p−1
2 (mod p).

Then multiplying by a, we get

a ≡ a
p+1
2 ≡

(
a

p+1
4

)2
(mod p).

Since p ≡ 3 (mod 4), this inner exponent is an integer, and so the x above does satisfy
the equation.

5. (Niven 3.2.6) Determine whether x2 ≡ 150 (mod 1009) is solvable.

So here we clearly want to calculate
(

150
1009

)
, and this makes sense since 1009 is prime.

(
150
1009

)
=

(
2

1009

) (
3

1009

) (
25

1009

)
= (−1)

10092−1
8

(
1009

3

)
· 1 = 1 ·

(
1
3

)
= 1.

Hence the equation is solvable.

6. (Niven 3.2.8 & 3.2.9)

(a) Characterize all primes p such that
(

10
p

)
= 1.

We have that (
10
p

)
=

(
2
p

) (
5
p

)
= (−1)

p2−1
8

(p

5

)
.

Now, we also have the following calculations of each factor.

(−1)
p2−1

8 =

{
1 if p ≡ ±1 (mod 8),
−1 if p ≡ ±3 (mod 8).

(p

5

)
=

{
1 if p ≡ ±1 (mod 5),
−1 if p ≡ ±2 (mod 5).

Now we can combine these into one set of conguence classes mod 58̇ = 40 using
CRT. We get (

10
p

)
=

{
1 if p ≡ ±1,±3,±9,±13 (mod 40),
−1 if p ≡ ±7,±11,±17,±19 (mod 40).

(b) Characterize all primes p such that
(

5
p

)
= −1.



We have, since 5 ≡ 1 (mod 4), that(
5
p

)
=

(p

5

)
.

So the primes with
(

5
p

)
= −1 are exactly those primes that are congruent to 2

or 3 mod 5, except for p = 2.

7. Use quadratic reciprocity to evaluate (7
p) based on the residue class of p mod 28.

Quadratic reciprocity gives(
7
p

)
= (−1)

7−1
2

· p−1
2

(p

7

)
=

(
(−1)3

)· p−1
2

(p

7

)
= (−1)

p−1
2

(p

7

)
.

As above, we find the values for each factor.

(−1)
p−1
2 =

{
1 if p ≡ 1 (mod 4),
−1 if p ≡ 3 (mod 4).

(p

7

)
=

{
1 if p ≡ 1, 2, 4 (mod 7),
−1 if p ≡ 3, 5, 6 (mod 7).

Now we can combine them using CRT.(
7
p

)
=

{
1 if p ≡ ±1,±3,±9 (mod 28),
−1 if p ≡ ±5,±11,±13 (mod 28).

8. In this problem you will produce an alternative proof of the formula for (2
p) when p is

an odd prime.

(a) Prove that 2 · 4 · · · (p − 3) · (p − 1) ≡
(

2
p

)
·
(

p − 1
2

)
! (mod p).

So we want to evaluate

2 · 4 · 6 · · · (p − 3)(p − 1) = (2 · 1)(2 · 2)(2 · 3)(· · · )(2 · (p − 1
2

))

= 2
p−1
2 ·

(
p − 1

2

)
!

≡
(

2
p

)
·
(

p − 1
2

)
! (mod p).

(b) If u is the number of terms in the product that are larger than p−1
2 , prove that

2 · 4 · · · (p − 3) · (p − 1) ≡ (−1)u

(
p − 1

2

)
! (mod p).

This is a similar calculation to those done in class. We have to reflect the numbers
in the left hand side product that are greater than p−1

2 about this line. Note
that this reflection is done by taking a number x and sending it to p − x. Since
the numbers x all start out even, and we are subtracting them from an odd p,
we get an odd number between 1 and p−1

2 . So none of the reflections land on
numbers already there, which are all even. Also, there are p−1

2 numbers after all

the reflections, so we have a reordering of exactly
(

p−1
2

)
!. Each reflection changed

the sign of the product however, so we have exactly the equation above.



(c) Compare (a) and (b) to derive the formula for (2
p); you will need to separate into

cases based on the value of p mod 8.
So now we have to find a formula for u. This is the number of even numbers
between p−1

2 and p, not inclusive. The number of even numbers less than p is
clearly just p−1

2 , so we have to subtract the number of evens less than or equal to
p−1
2 which gives

u =
p − 1

2
− bp − 1

4
c.

Then we can find a formula for (−1)u, which is

(−1)u =

{
1 if p ≡ ±1 (mod 8),
−1 if p ≡ ±3 (mod 8).

So by our two evaluations of the product, we can easily see that we get the normal

formula for
(

2
p

)
, namely exactly the formula above for (−1)u.

9. (Niven 3.3.1) Evaluate using quadratic reciprocity for Jacobi symbols:

(a)
(
−23
83

)
(b)

(
51
71

) (c)
(

71
73

)
(d)

(
−35
97

)
.

(a)
(
−23
85

)
=

(
−1
85

) (
23
85

)
= 1

(
85
23

)
=

(
16
23

)
= 1.

(b)
(

51
71

)
= −

(
20
51

)
= −

(
4
51

) (
5
51

)
= −

(
51
5

)
= −

(
1
5

)
= −1.

(c)
(

71
73

)
=

(
73
71

)
=

(
2
71

)
= 1.

(d)
(
−35
97

)
=

(
−1
97

) (
35
97

)
= 1·

(
97
35

)
=

(
27
35

)
= −

(
35
27

)
= −

(
8
27

)
= −

(
2
27

)
=

−(−1) = 1.

10. (Niven 3.3.7, 3.3.8 & 3.3.9)

(a) For which primes are there solutions to x2 +y2 ≡ 0 (mod p) with (x, p) = (y, p) =
1?

The answer turns out to be all primes with
(
−1
p

)
= 1. This is because if (x, y) is

a solution to the equation above, then xy is a square root of −1 mod p, which can
be seen easily by multiplying the equation by (y)2. So a solution of the equation

implies that
(
−1
p

)
= 1. Conversely, if

(
−1
p

)
= 1, then there is some z with

z2 ≡ −1, so z2 + (1)2 ≡ 0 (mod p).
These primes are exactly the primes not conguent to 3 mod 4.



(b) For which prime powers are there solutions to x2 + y2 ≡ 0 (mod pn) with (x, p) =
(y, p) = 1?
If there is a solution for a prime power, it is certainly a solution for the prime, so
the only prime powers that could possibly have solutions are those not congruent
to 3 mod 4. To check, we can just try to lift our square root of −1. This is lifting
the root of the polynomial x2 + 1, whose derivative is 2x. Clearly the only prime
for which the root of the polynomial is singular is when p = 2. Otherwise, a root
of 2x must just be zero, which is clearly not a root of x2 +1. So for any odd prime,
that is, the ones congruent to 1 mod 4, Hensel’s Lemma guarantees that there is
a square root of −1 mod pn for all n.
The last case is p = 2. We can check that mod 22 = 4, there is no square root of
−1. In particular, there is no solution of x2 + y2 ≡ 0 (mod 4) with neither x nor
y congruent to 0, since the only nonzero squares are 1. So the prime powers that
work are exactly the set

{pn | p ≡ 1 (mod 4), n ∈ Z+} ∪ {2}.

(Bonus) For which integers n are there solutions to x2 + y2 ≡ 0 (mod n) with (x, n) =
(y, n) = 1?

(Bonus) (Niven 3.2.16) Show that if p = 22n
+ 1 is prime, then 3 is a primitive root modulo p,

and that 5 and 7 are primitive roots when n > 1.


