18.781 Problem Set 9 - Fall 2008

Due Thursday, Nov. 13 at 1:00

- 1. (Niven 7.8.2) Suppose that N is a nonzero integer. Prove that if $x^2 dy^2 = N$ has one solution, then it has infinitely many.
- 2. (Niven 7.8.3) Prove that $x^2 dy^2 = -1$ has no solution if $d \equiv 3 \pmod{4}$.
- 3. (Niven 7.1.1) Expand the following fractions into simple continued fractions:

(a)
$$\frac{17}{3}$$
 (c) $\frac{8}{1}$
(b) $\frac{3}{17}$ (d) $\frac{71}{34}$

4. Prove that if $x = [a_0, a_1, \ldots, a_r]$ is greater than 1, then $\frac{1}{x} = [0, a_0, a_1, \ldots, a_r]$.

- 5. (Niven 7.1.3) Convert the continued fractions into rational numbers:
 - (a) [2, 1, 4] (c) [0, 1, 1, 100]. (b) [-3, 2, 12]
- 6. (Niven 7.1.4 & 7.1.5) Suppose that c > d, and that all a_i are integers.
 - (a) Prove that $[a_0, c] < [a_0, d]$.
 - (b) Prove that $[a_0, a_1, c] > [a_0, a_1, d]$.
 - (c) Prove that $[a_0, a_1, \ldots, a_r, c] < [a_0, a_1, \ldots, a_r, d]$ if and only if r is even, with the opposite (strict) inequality when r is odd.
- 7. (Niven 7.3.1 & 7.3.2)
 - (a) Evaluate [1, 1, 1, ...].
 - (b) Evaluate [2, 1, 1, 1, ...].
 - (c) Evaluate $[2, 3, 1, 1, 1, \ldots]$.
- 8. (Niven 7.3.4) For $i \ge 1$, prove that

$$\frac{k_i}{k_{i-1}} = [a_i, a_{i-1}, \dots, a_2, a_1].$$

Find and prove a similar formula for $\frac{h_i}{h_{i-1}}$ (*Hint: Use the Euclidean algorithm on* k_i and k_{i-1}).

- 9. Calculate the first three convergents for
 - (a) e^2 (b) 2π .
- 10. Calculate the infinite continued fraction expansions for

(a)
$$\sqrt{7}$$

(b) $\frac{1+\sqrt{13}}{2}$.

(Bonus) Let n be a positive integer.

- (a) Prove that $\sqrt{n^2 + 1} = [n, \overline{2n}]$.
- (b) Prove that $\sqrt{n^2 + 2} = [n, \overline{n, 2n}].$ (c) Prove that $\sqrt{n^2 + 2n} = [n, \overline{1, 2n}].$