18.781 Solutions to Problem Set 9 - Fall 2008

Due Thursday, Nov. 13 at 1:00

1. (Niven 7.8.2) Suppose that N is a nonzero integer. Prove that if $x^2 - dy^2 = N$ has one solution, then it has infinitely many.

We are given that $x^2 - dy^2 = N$ has one solution, let's call it (x_0, y_0) . Then we know that there are infinitely many solutions (x_i, y_i) to Pell's equation:

$$x_i^2 - dy_i^2 = 1.$$

For each of these solutions, we consider the following:

$$N = N \cdot 1 = (x_0^2 - dy_0^2)(x_i^2 - dy_i^2)$$

= $(x_0 - \sqrt{dy_0})(x_0 + \sqrt{dy_0})(x_i - \sqrt{dy_i})(x_i + \sqrt{dy_i})$
= $(x_0 - \sqrt{dy_0})(x_i - \sqrt{dy_i})(x_0 + \sqrt{dy_0})(x_i + \sqrt{dy_i})$
= $\left((x_0x_i + dy_0y_i) - \sqrt{d}(x_0y_i + y_0x_i)\right)\left((x_0x_i + dy_0y_i) + \sqrt{d}(x_0y_i + y_0x_i)\right)$
= $(x_0x_i + dy_0y_i)^2 - d(x_0y_i + y_0x_i)^2.$

So each of the infinite solutions to Pell's equation gives a solution to the given equation, so there are infinitely many.

2. (Niven 7.8.3) Prove that $x^2 - dy^2 = -1$ has no solution if $d \equiv 3 \pmod{4}$. If $d \equiv 3 \pmod{4}$, then looking at the equation mod 4, we get the congruence

$$x^2 + y^2 \equiv 3 \pmod{4}.$$

But the squares mod 4 are just 0 and 1. Two of these clearly cannot be combined to make 3, so there are no solutions to the equation for these values of d.

- 3. (Niven 7.1.1) Expand the following fractions into simple continued fractions:
 - (a) $\frac{17}{3}$ (c) $\frac{8}{1}$ (b) $\frac{3}{17}$ (d) $\frac{71}{34}$. (a)

$$\frac{17}{3} = 5 + \frac{2}{3} = 5 + \frac{1}{\frac{3}{2}} = 5 + \frac{1}{1 + \frac{1}{2}} = [5, 1, 2].$$

(b)

$$\frac{3}{17} = 0 + \frac{1}{\frac{17}{3}} = 0 + \frac{1}{5 + \frac{1}{1 + \frac{1}{2}}} = [0, 5, 1, 2]$$

$$\frac{8}{1} = 8 = [8].$$

(d)

$$\frac{71}{34} = 2 + \frac{3}{34} = 2 + \frac{1}{\frac{34}{3}} = 2 + \frac{1}{11 + \frac{1}{3}} = [2, 11, 3].$$

4. Prove that if $x = [a_0, a_1, \ldots, a_r]$ is greater than 1, then $\frac{1}{x} = [0, a_0, a_1, \ldots, a_r]$. If x > 1, then $a_0 > 0$, since it is equal to $\lfloor x \rfloor$. Therefore,

$$\frac{1}{x} = \frac{1}{[a_0, a_1, \dots, a_r]} = 0 + \frac{1}{a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \ddots}}} = [0, a_0, a_1, \dots, a_r].$$

5. (Niven 7.1.3) Convert the continued fractions into rational numbers:

$$-3 + \frac{1}{2 + \frac{1}{12}} = -3 + \frac{1}{\frac{25}{12}} = -3 + \frac{12}{25} = -\frac{63}{25}.$$

(c)

$$0 + \frac{1}{1 + \frac{1}{1 + \frac{1}{100}}} = \frac{1}{1 + \frac{1}{\frac{101}{100}}} = \frac{1}{1 + \frac{100}{101}} = \frac{1}{\frac{201}{101}} = \frac{101}{201}.$$

6. (Niven 7.1.4 & 7.1.5) Suppose that c > d, and that all a_i are integers.

(a) Prove that $[a_0, c] < [a_0, d]$. We have c > d, so $\frac{1}{c} < \frac{1}{d}$, and by adding a_0 to both sides we get the inequality.

(b) Prove that $[a_0, a_1, c] > [a_0, a_1, d]$. Let $c' = [a_1, c]$ and $d' = [a_1, d]$. Then by the above argument, we get d' > c', and so, using the above argument again, we get the middle inequality in the following:

$$[a_0, a_1, c] = [a_0, c'] > [a_0, d'] = [a_0, a_1, d].$$

- (c) Prove that [a₀, a₁,..., a_r, c] < [a₀, a₁,..., a_r, d] if and only if r is even, with the opposite (strict) inequality when r is odd. So this is an induction on r. Above we have shown that the statement holds for r = 0, 1. Now suppose the statement holds for all r from 0 to k − 1. Then we want to prove the corresponding inequality for [a₀, a₂,..., a_k, c] and [a₀, a₂,..., a_k, d]. If we drop the first term of each, we have the opposite inequality to the one we are trying to prove between [a₁, a₂,..., a_k, c] and [a₁, a₂,..., a_k, d], by the inductive hypothesis (it falls under r = k − 1). If we invert both sides of this inequality, we switch its direction to the type we are trying to prove, and then we add a₀ to both sides to prove the statement for r = k.
- 7. (Niven 7.3.1 & 7.3.2)
 - (a) Evaluate [1, 1, 1, ...]. This infinite continued fraction converges to a number x that must satisfy the equation

$$x = 1 + \frac{1}{x},$$

by the recursion in the definition of the continued fraction. We can solve this by multiplying through by x.

$$x^2 - x - 1 = 0,$$

so the quadratic formula gives

$$x = \frac{1 \pm \sqrt{5}}{2}.$$

Since x is clearly greater than 1, because its first term in the continued fraction expansion is 1, we must have the positive square root. So

$$[1, 1, 1, \ldots] = \frac{1 + \sqrt{5}}{2},$$

also known as ϕ , the golden ratio.

(b) Evaluate [2, 1, 1, 1, ...].

$$[2, 1, 1, 1, \dots] = 1 + [1, 1, 1, 1, \dots] = 1 + \frac{1 + \sqrt{5}}{2} = \frac{3 + \sqrt{5}}{2}.$$

(c) Evaluate [2, 3, 1, 1, 1, ...].

$$[2,3,1,1,1,\ldots] = 2 + \frac{1}{2 + [1,1,1,\ldots]} = 2 + \frac{1}{2 + \frac{1+\sqrt{5}}{2}}$$
$$= 2 + \frac{2}{5 + \sqrt{5}} = 2 + \frac{10 - 2\sqrt{5}}{20} = \frac{25 - \sqrt{5}}{10}.$$

8. (Niven 7.3.4) For $i \ge 1$, prove that

$$\frac{k_i}{k_{i-1}} = [a_i, a_{i-1}, \dots, a_2, a_1].$$

Find and prove a similar formula for $\frac{h_i}{h_{i-1}}$ (*Hint: Use the Euclidean algorithm on* k_i and k_{i-1}).

We have a recursion to find the k_i 's that is: $k_{-2} = 1$, $k_{-1} = 0$, and $k_i = a_i k_{i-1} + k_{i-2}$ for $k \ge 0$. So clearly $k_0 = 1$ and $k_1 = a_1$. This proves the above formula for i = 1. Now assume inductively that the formula holds for i < n. Then $k_n = a_n k_{n-1} + k_{n-2}$ implies

$$\frac{k_n}{k_n-1} = a_n + \frac{k_{n-2}}{k_{n-1}} = a_n + \frac{1}{\frac{k_{n-1}}{k_{n-2}}} = a_n + \frac{1}{[a_{n-1}, a_{n-2}, \dots, a_1]} = [a_n, a_{n-1}, \dots, a_1].$$

For the h_i 's the difference in the recursion only comes from the switching of the values of h_{-2} and h_{-1} , which leads to the base case being instead

$$\frac{h_0}{h_{-1}} = a_0.$$

The rest of the proof follows exactly, and you get that for all $i \ge 0$,

$$\frac{h_i}{h_{i-1}} = [a_i, a_{i-1}, \dots, a_0].$$

9. Calculate the first three convergents for

(a)
$$e^2$$
 (b) 2π .

- (a) $e^2 = [7, 2, 1, 1, ...]$. So the first three convergents are 7, $\frac{15}{2}$, and $\frac{22}{3}$.
- (b) $2\pi = [6, 3, 1, 1, ...]$. So the first three convergents are 6, $\frac{19}{3}$, and $\frac{25}{4}$.

10. Calculate the infinite continued fraction expansions for

(a) $\sqrt{7}$ (b) $\frac{1+\sqrt{13}}{2}$.

(a)

$$\sqrt{7} = 2 + (\sqrt{7} - 2)$$

$$\frac{1}{\sqrt{7} - 2} = \frac{\sqrt{7} + 2}{3} = 1 + \frac{\sqrt{7} - 1}{3}$$

$$\frac{3}{\sqrt{7} - 1} = \frac{3(\sqrt{7} + 1)}{6} = 1 + \frac{\sqrt{7} - 1}{2}$$

$$\frac{2}{\sqrt{7} - 1} = \frac{2(\sqrt{7} + 1)}{6} = 1 + \frac{\sqrt{7} - 2}{3}$$

$$\frac{3}{\sqrt{7} - 2} = \frac{3(\sqrt{7} + 2)}{3} = 4 + (\sqrt{7} - 2)$$

We have repeated a remainder, so it is clear that the continued fraction expansion is $[2, \overline{1, 1, 1, 4}]$.

(b)

$$\frac{1+\sqrt{13}}{2} = 2 + \frac{\sqrt{13}-3}{2}$$
$$\frac{2}{\sqrt{13}-3} = \frac{2(\sqrt{13}+3)}{4} = 3 + \frac{\sqrt{13}-3}{2}$$

Immediately we get a repeated remainder! So the continued fraction expansion is simply $[2,\overline{3}]$.

- (Bonus) Let n be a positive integer.
 - (a) Prove that $\sqrt{n^2 + 1} = [n, \overline{2n}].$

 - (b) Prove that $\sqrt{n^2+2} = [n, \overline{n, 2n}].$ (c) Prove that $\sqrt{n^2+2n} = [n, \overline{1, 2n}].$