
18.781 Solutions to Problem Set 9 - Fall 2008
Due Thursday, Nov. 13 at 1:00

1. (Niven 7.8.2) Suppose that N is a nonzero integer. Prove that if x2 − dy2 = N has one
solution, then it has infinitely many.

We are given that x2 − dy2 = N has one solution, let’s call it (x0, y0). Then we know
that there are infinitely many solutions (xi, yi) to Pell’s equation:

x2
i − dy2

i = 1.

For each of these solutions, we consider the following:

N = N · 1 = (x2
0 − dy2

0)(x
2
i − dy2

i )

= (x0 −
√

dy0)(x0 +
√

dy0)(xi −
√

dyi)(xi +
√

dyi)

= (x0 −
√

dy0)(xi −
√

dyi)(x0 +
√

dy0)(xi +
√

dyi)

=
(
(x0xi + dy0yi)−

√
d(x0yi + y0xi)

) (
(x0xi + dy0yi) +

√
d(x0yi + yoxi)

)
= (x0xi + dy0yi)2 − d(x0yi + y0xi)2.

So each of the infinite solutions to Pell’s equation gives a solution to the given equation,
so there are infinitely many.

2. (Niven 7.8.3) Prove that x2 − dy2 = −1 has no solution if d ≡ 3 (mod 4).

If d ≡ 3 (mod 4), then looking at the equation mod 4, we get the congruence

x2 + y2 ≡ 3 (mod 4).

But the squares mod 4 are just 0 and 1. Two of these clearly cannot be combined to
make 3, so there are no solutions to the equation for these values of d.

3. (Niven 7.1.1) Expand the following fractions into simple continued fractions:

(a)
17
3

(b)
3
17

(c)
8
1

(d)
71
34

.

(a)
17
3

= 5 +
2
3

= 5 +
1
3
2

= 5 +
1

1 +
1
2

= [5, 1, 2].

(b)
3
17

= 0 +
1
17
3

= 0 +
1

5 +
1

1 +
1
2

= [0, 5, 1, 2]



(c)
8
1

= 8 = [8].

(d)
71
34

= 2 +
3
34

= 2 +
1
34
3

= 2 +
1

11 +
1
3

= [2, 11, 3].

4. Prove that if x = [a0, a1, . . . , ar] is greater than 1, then 1
x = [0, a0, a1, . . . , ar].

If x > 1, then a0 > 0, since it is equal to bxc. Therefore,

1
x

=
1

[a0, a1, . . . , ar]
= 0 +

1

a0 +
1

a1 +
1

a2 +
.. .

= [0, a0, a1, . . . , ar].

5. (Niven 7.1.3) Convert the continued fractions into rational numbers:

(a) [2, 1, 4]
(b) [−3, 2, 12]

(c) [0, 1, 1, 100].

(a)

2 +
1

1 +
1
4

= 2 +
1
5
4

= 2 +
4
5

=
14
5

.

(b)

−3 +
1

2 +
1
12

= −3 +
1
25
12

= −3 +
12
25

= −63
25

.

(c)

0 +
1

1 +
1

1 +
1

100

=
1

1 +
1

101
100

=
1

1 +
100
101

=
1

201
101

=
101
201

.

6. (Niven 7.1.4 & 7.1.5) Suppose that c > d, and that all ai are integers.

(a) Prove that [a0, c] < [a0, d].
We have c > d, so 1

c < 1
d , and by adding a0 to both sides we get the inequality.

(b) Prove that [a0, a1, c] > [a0, a1, d].
Let c′ = [a1, c] and d′ = [a1, d]. Then by the above argument, we get d′ > c′, and
so, using the above argument again, we get the middle inequality in the following:

[a0, a1, c] = [a0, c
′] > [a0, d

′] = [a0, a1, d].



(c) Prove that [a0, a1, . . . , ar, c] < [a0, a1, . . . , ar, d] if and only if r is even, with the
opposite (strict) inequality when r is odd.
So this is an induction on r. Above we have shown that the statement holds for
r = 0, 1. Now suppose the statement holds for all r from 0 to k−1. Then we want
to prove the corresponding inequality for [a0, a2, . . . , ak, c] and [a0, a2, . . . , ak, d]. If
we drop the first term of each, we have the opposite inequality to the one we are
trying to prove between [a1, a2, . . . , ak, c] and [a1, a2, . . . , ak, d], by the inductive
hypothesis (it falls under r = k − 1). If we invert both sides of this inequality, we
switch its direction to the type we are trying to prove, and then we add a0 to both
sides to prove the statement for r = k.

7. (Niven 7.3.1 & 7.3.2)

(a) Evaluate [1, 1, 1, . . . ].
This infinite continued fraction converges to a number x that must satisfy the
equation

x = 1 +
1
x

,

by the recursion in the definition of the continued fraction. We can solve this by
multiplying through by x.

x2 − x− 1 = 0,

so the quadratic formula gives

x =
1±

√
5

2
.

Since x is clearly greater than 1, because its first term in the continued fraction
expansion is 1, we must have the positive square root. So

[1, 1, 1, . . . ] =
1 +

√
5

2
,

also known as φ, the golden ratio.

(b) Evaluate [2, 1, 1, 1, . . . ].

[2, 1, 1, 1, . . . ] = 1 + [1, 1, 1, 1, . . . ] = 1 +
1 +

√
5

2
=

3 +
√

5
2

.

(c) Evaluate [2, 3, 1, 1, 1, . . . ].

[2, 3, 1, 1, 1, . . . ] = 2 +
1

2 + [1, 1, 1, . . . ]
= 2 +

1

2 + 1+
√

5
2

= 2 +
2

5 +
√

5
= 2 +

10− 2
√

5
20

=
25−

√
5

10
.

8. (Niven 7.3.4) For i ≥ 1, prove that

ki

ki−1
= [ai, ai−1, . . . , a2, a1].



Find and prove a similar formula for hi
hi−1

(Hint: Use the Euclidean algorithm on ki and
ki−1).

We have a recursion to find the ki’s that is: k−2 = 1, k−1 = 0, and ki = aiki−1 + ki−2

for k ≥ 0. So clearly k0 = 1 and k1 = a1. This proves the above formula for i = 1. Now
assume inductively that the formula holds for i < n. Then kn = ankn−1 + kn−2 implies

kn

kn − 1
= an +

kn−2

kn−1
= an +

1
kn−1

kn−2

= an +
1

[an−1, an−2, . . . , a1]
= [an, an−1, . . . , a1].

For the hi’s the difference in the recursion only comes from the switching of the values
of h−2 and h−1, which leads to the base case being instead

h0

h−1
= a0.

The rest of the proof follows exactly, and you get that for all i ≥ 0,

hi

hi−1
= [ai, ai−1, . . . , a0].

9. Calculate the first three convergents for

(a) e2 (b) 2π.

(a) e2 = [7, 2, 1, 1, . . . ]. So the first three convergents are 7, 15
2 , and 22

3 .

(b) 2π = [6, 3, 1, 1, . . . ]. So the first three convergents are 6, 19
3 , and 25

4 .

10. Calculate the infinite continued fraction expansions for

(a)
√

7 (b) 1+
√

13
2 .

(a)
√

7 = 2 + (
√

7− 2)

1√
7− 2

=
√

7 + 2
3

= 1 +
√

7− 1
3

3√
7− 1

=
3(
√

7 + 1)
6

= 1 +
√

7− 1
2

2√
7− 1

=
2(
√

7 + 1)
6

= 1 +
√

7− 2
3

3√
7− 2

=
3(
√

7 + 2)
3

= 4 + (
√

7− 2)

We have repeated a remainder, so it is clear that the continued fraction expansion
is [2, 1, 1, 1, 4].



(b)

1 +
√

13
2

= 2 +
√

13− 3
2

2√
13− 3

=
2(
√

13 + 3)
4

= 3 +
√

13− 3
2

Immediately we get a repeated remainder! So the continued fraction expansion is
simply [2, 3].

(Bonus) Let n be a positive integer.

(a) Prove that
√

n2 + 1 = [n, 2n].

(b) Prove that
√

n2 + 2 = [n, n, 2n].

(c) Prove that
√

n2 + 2n = [n, 1, 2n].


